SYLLABUS & CURRICULUM

of

B.Tech.

CIVIL ENGINEERING
(3rd to 8th semesters)

UNIVERSITY OF CALICUT

(2014 admission)
2014 Scheme for Civil Engineering (CE) Branch

3rd Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/ Week</th>
<th>Marks</th>
<th>Duration of End Semester examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN14 301</td>
<td>Engineering Mathematics III</td>
<td>L 3 T 1 P/D 0</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EN14 302</td>
<td>Computer Programming in C</td>
<td>L 2 T 0 P/D 2</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CE14 303</td>
<td>Mechanics of Solids</td>
<td>L 3 T 1 P/D 0</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CE14 304</td>
<td>Building Technology I</td>
<td>L 3 T 1 P/D 0</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CE14 305</td>
<td>Surveying I</td>
<td>L 3 T 1 P/D 0</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CE14 306</td>
<td>Engineering Geology</td>
<td>L 3 T 1 P/D 0</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CE14 307 (P)</td>
<td>Surveying Lab I</td>
<td>L 0 T 0 P/D 3</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CE14 308 (P)</td>
<td>Materials Testing Lab I</td>
<td>L 0 T 0 P/D 3</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>L 17 T 5 P/D 8</td>
<td></td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

Note: For EN 14 302 Computer Programming in C, the end semester examination will be held by the University as a theory paper.

4th Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/ Week</th>
<th>Marks</th>
<th>Duration of End Semester examinations</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EN14 401</td>
<td>Engineering Mathematics IV</td>
<td>L 3 T 1 P/D 0</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>EN14 402</td>
<td>Environment Science</td>
<td>L 3 T 1 P/D 0</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CE14 403</td>
<td>Fluid Mechanics</td>
<td>L 3 T 1 P/D 0</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CE14 404</td>
<td>Structural Analysis I</td>
<td>L 3 T 1 P/D 0</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CE14 405</td>
<td>Engineering Economics & Principles of Management</td>
<td>L 3 T 1 P/D 0</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CE14 406</td>
<td>Surveying II</td>
<td>L 3 T 1 P/D 0</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>CE14 407 (D)</td>
<td>Civil Engineering Drawing I</td>
<td>L 0 T 0 P/D 3</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>CE14 408 (P)</td>
<td>Surveying Lab II</td>
<td>L 0 T 0 P/D 3</td>
<td>50 Internal 100 End Semester</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>L 18 T 6 P/D 6</td>
<td></td>
<td></td>
<td>28</td>
</tr>
</tbody>
</table>

Note: Even though the subject CE 14 407 (D) Civil Engineering Drawing I is considered as a practical, the end semester examination will be conducted by the University.
5th Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/ Week</th>
<th>Marks</th>
<th>Duration of End Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE14 501</td>
<td>Structural Design I</td>
<td>3 1 0 50 100</td>
<td></td>
<td></td>
<td>3 4</td>
</tr>
<tr>
<td>CE14 502</td>
<td>Building Technology II</td>
<td>3 1 0 50 100</td>
<td></td>
<td></td>
<td>3 4</td>
</tr>
<tr>
<td>CE14 503</td>
<td>Transportation Engineering I</td>
<td>3 1 0 50 100</td>
<td></td>
<td></td>
<td>3 4</td>
</tr>
<tr>
<td>CE14 504</td>
<td>Structural Analysis II</td>
<td>3 1 0 50 100</td>
<td></td>
<td></td>
<td>3 4</td>
</tr>
<tr>
<td>CE14 505</td>
<td>Geotechnical Engineering I</td>
<td>3 1 0 50 100</td>
<td></td>
<td></td>
<td>3 4</td>
</tr>
<tr>
<td>CE14 506</td>
<td>Open Channel Hydraulics & Hydraulic Machinery</td>
<td>3 1 0 50 100</td>
<td></td>
<td></td>
<td>3 4</td>
</tr>
<tr>
<td>CE14 507(D)</td>
<td>Civil Engineering Drawing II</td>
<td>0 0 3 50 100</td>
<td></td>
<td></td>
<td>3 2</td>
</tr>
<tr>
<td>CE14 508(P)</td>
<td>Fluid Mechanics Lab</td>
<td>0 0 3 50 100</td>
<td></td>
<td></td>
<td>3 2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>18 6 6 6 28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:

- Even though the subject CE 14 507 (D) Civil Engineering Drawing II is considered as a practical, the end semester examination will be conducted by the University.

6th Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/ Week</th>
<th>Marks</th>
<th>Duration of End Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE14 601</td>
<td>Structural Design II</td>
<td>3 1 0 50 100</td>
<td></td>
<td></td>
<td>3 4</td>
</tr>
<tr>
<td>CE14 602</td>
<td>Transportation Engineering II</td>
<td>3 1 0 50 100</td>
<td></td>
<td></td>
<td>3 4</td>
</tr>
<tr>
<td>CE14 603</td>
<td>Hydrology & Irrigation Engineering</td>
<td>3 1 0 50 100</td>
<td></td>
<td></td>
<td>3 4</td>
</tr>
<tr>
<td>CE14 604</td>
<td>Structural Analysis III</td>
<td>3 1 0 50 100</td>
<td></td>
<td></td>
<td>3 4</td>
</tr>
<tr>
<td>CE14 605</td>
<td>Geotechnical Engineering II</td>
<td>3 1 0 50 100</td>
<td></td>
<td></td>
<td>3 4</td>
</tr>
<tr>
<td>CE14 606</td>
<td>Computational Methods and Operations Research</td>
<td>3 1 0 50 100</td>
<td></td>
<td></td>
<td>3 4</td>
</tr>
<tr>
<td>CE14 607 (P)</td>
<td>Geotechnical Engineering Lab</td>
<td>0 0 3 50 100</td>
<td></td>
<td></td>
<td>3 2</td>
</tr>
<tr>
<td>CE14 608 (P)</td>
<td>Materials Testing Lab II</td>
<td>0 0 3 50 100</td>
<td></td>
<td></td>
<td>3 2</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>18 6 6 28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7th Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/Week</th>
<th>Marks</th>
<th>Duration of End Semester</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/ D</td>
<td>Intern</td>
</tr>
<tr>
<td>CE14 701</td>
<td>Structural Design III</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>CE14 702</td>
<td>Design of Hydraulic Structures</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>CE14 703</td>
<td>Environmental Engineering I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>CE14 704</td>
<td>Elective I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>CE14 705</td>
<td>Elective II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>CE14 706 (P)</td>
<td>Computer Applications Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>CE14 707 (P)</td>
<td>Environmental Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>CE14 708 (P)</td>
<td>Project</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>14</td>
<td>4</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Elective I
- CE14 704(A) Advanced Structural Design I
- CE14 704(B) Advanced Geotechnical Engineering I
- CE14 704(C) Highway Pavement Design
- CE14 704(D) Experimental Stress Analysis (G)
- CE14 704(E) Concrete Technology

Elective II
- CE14 705(A) Structural Dynamics & Seismic Design
- CE14 705(B) Soil Exploration, Testing and Evaluation
- CE14 705(C) Ecology and Environmental Chemistry
- CE14 705(D) Ground Water Hydrology
- CE13 705(E) Finite Element Methods (G)
8th Semester

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Hours/ Week</th>
<th>Marks</th>
<th>Duration of End Semester Examination</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P/D</td>
<td>Internal</td>
</tr>
<tr>
<td>CE14 801</td>
<td>Environmental Engineering II</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>CE14 802</td>
<td>Quantity Surveying & Valuation</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>CE14 803</td>
<td>Construction Engineering & Management</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>CE14 804</td>
<td>Elective III</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>CE14 805</td>
<td>Elective IV</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>CE14 806 (P)</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100</td>
</tr>
<tr>
<td>CE14 807 (P)</td>
<td>Project</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>150</td>
</tr>
<tr>
<td>CE14 808 (P)</td>
<td>Viva Voce</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>15</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Elective III
- CE14 804(A) Advanced Structural Design II
- CE14 804(B) Advanced Geotechnical Engineering II
- CE14 804(C) Surface Hydrology and Water Power
- CE14 804(D) Urban Transportation Planning
- CE14 804(E) Remote Sensing and GIS (G)

Elective IV
- CE14 805(A) Industrial Structures
- CE14 805(B) Advanced Construction Engg: and Management
- CE14 805(C) Coastal Engineering & Marine Structures
- CE14 805(D) Ground Improvement Techniques
- CE14 805 (E) Environmental Pollution Control Engineering (G)
3rd Semester

EN 14 301: Engineering Mathematics III
(Common for all branches)

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective
This course provides a quick overview of the concepts and results in complex analysis that may be useful in engineering. Also it gives an introduction to linear algebra and Fourier transform which are wealths of ideas and results with wide area of application.

Module I: Functions of a Complex Variable (13 hours)
Functions of a complex variable – Limit – Continuity – Derivative of a complex function – Analytic functions – Cauchy-Riemann equations – Laplace equation – Harmonic functions – Conformal mapping – Examples: \(e^z\), \(\sin z\), \(\cosh z\), \((z+1)/z\) – Mobius transformation.

Module II: Functions of a Complex Variable (13 hours)

Module III: Linear Algebra (13 hours) – (Proofs not required)

Module IV: Fourier Transforms (13 hours)

Text Books

Module I:
Erwin Kreysig, Advanced Engineering Mathematics, 8e, John Wiley and Sons, Inc.
Sections: 12.3, 12.4, 12.5, 12.6, 12.7, 12.9

Module II:
Erwin Kreysig, Advanced Engineering Mathematics, 8e, John Wiley and Sons, Inc.
Sections: 13.1, 13.2, 13.3, 13.4, 14.4, 15.1, 15.2, 15.3, 15.4

Module III:
Bernard Kolman, David R Hill, Introductory Linear Algebra, An Applied First Course, Pearson Education.
Sections: 6.1, 6.2, 6.3, 6.4, 6.8, Appendix B.1

Module IV:
Sections: 9.1, 9.3, 9.5
Reference books

Internal Continuous Assessment (Maximum Marks-50)

60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Attendance and Regularity in the class

University Examination Pattern

- **PART A:** Analytical/problem solving SHORT questions 8x 5 marks=40 marks

 Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

- **PART B:** Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks

 Two questions from each module with choice to answer one question.

 Maximum Total Marks: 100

EN 14 302 Computer Programming in C

(Common for all branches)

Teaching scheme

2 hours lecture and 2 hours lab per week

Credits: 4

Objectives

- To impart the basic concepts of computer and information technology
- To develop skill in problem solving concepts through learning C programming in practical approach.

Module I (13 hours)

Introduction to Computers: CPU, Memory, input-output devices, secondary storage devices

Programming and problem solving-Basic computer organization, Developing -High level and low level Languages-Compilers, Assemblers and interpreters-Writing ,Compiling and executing a program -Debugging a program- Latest trends and technologies of storage ,memory ,Processors, Printing etc. Developing Algorithms- Flow charts

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
Module II (13 hours)
Basic elements of C: Structure of C program – Numerical constants-Variables- Data types-Arithmetic Operators – Arithmetic expressions – Increment and Decrement operators- format specifications – Bit level operators and applications – Relational operators- Relational expression -Logical operators Logical expressions – Conditional operators- Precedence and associativity of operators Procedure and order of evaluation – Input and Output functions. Simple programming examples.

Module III (13 hours)
Compound statements – conditional statements - if, if-else, switch, break, continue, goto, and labels ,while, do-while and for statements, Example problems
Functions - user defined functions – Library functions – Header files declaring, defining, and accessing functions - parameter passing methods – extern, auto, register and static. – Example programs.
Arrays: Defining and processing arrays – passing arrays to functions – two dimensional and multidimensional arrays – application of arrays. Example programs.

Module IV (13 hours)
Structures – declaration, definition and initialization of structures, unions,
Pointers: Concepts, declaration, initialization of pointer variables simple examples
Concept of a file: File operations File pointer, simple examples
Object-Oriented Programming: Basic concepts, Declaration of classes and objects-Calling a member function- constructor and destructor-Operator Overloading-Inheritance and levels of inheritance.(only concepts and programming using these concepts is not expected)

Text Books

Reference Books

Internal Continuous Assessment (Maximum Marks-50)
- 50% - Lab Practical Tests
- 20% - Assignments
- 20% - Main Record
- 10% - Regularity in the class

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8 x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE 14 303: Mechanics of Solids

Teaching scheme Credits: 4
3 hours lecture and 1 hour tutorial per week

Objectives
• To study the internal effects produced and deformations of bodies caused by externally applied forces.
• To understand the strength characteristics of different materials and structural members subjected to axial load, shear, torsion and bending.

Module I (13 Hours)
Tension, compression & shear: Types of external loads - internal stresses - normal and shear stresses - strain - Hooke’s law - Poisson’s ratio - relationship between elastic constants – working stress - stress strain diagrams - elongation of bars of constant and varying sections – statically indeterminate problems in tension and compression – Temperature and Prestrain effects – strain energy and complementary energy-strain energy due to tension, compression and shear.

Module II (13 Hours)
Bending Moment & Shear force: Different types of beams- various types of loading – Relationship connecting intensity of loading, shearing force and bending moment- shear force and bending moment diagrams for cantilever beams, Simply supported and overhanging beams for different types of loading.
Stresses in beams of symmetrical cross sections:

Module III (13 hours)
Analysis of stress and strain on oblique sections:
Stress on inclined planes for axial and biaxial stress fields - principal stresses - Mohr’s circle of stress - principal strains - strain rosette
Thin and Thick Cylinders: Stresses in thin cylinders – thick cylinders - Lame’s equation – stresses in thick cylinders due to internal and external pressures
Torsion: Torsion of solid and hollow circular shafts.- Pure shear- strain energy in pure shear and torsion.
Springs: Close coiled and open coiled helical springs.

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
Module IV (13 hours)

Theory of columns: Direct and bending stresses in short columns- Kern of a section. Buckling and stability-Euler’s buckling/crippling load for columns with different end conditions- Rankine’s formula - Eccentric loads and the Secant formula-Imperfections in columns.

Text Books

Reference books

Internal work assessment (Maximum Marks – 50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, quiz, literature survey, seminar, term-project.
10% - Regularity in the class.

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4x15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100
11

CE 14 304: Building Technology I

Credits: 4

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Objectives:
To study (i) Details regarding properties and testing of building materials, (ii) Details regarding the construction of building components (iii) Properties of concrete and concrete mix design. (iv) Basic concepts in planning of buildings

Module I (13 hours)

Module II (13 hours)

Module III (13 hours)

Stairs – types - layout and planning. Finishing works – Plastering, pointing, white washing, colour washing, distempering, painting. Methods of providing DPC. Termite proofing.
Module IV (13 hours)
Functional planning of buildings - occupancy classification of buildings - building codes and rules - functional requirements of residential and public buildings as per the relevant building rules and NBC- Planning principles - checking for circulation, ventilation, structural requirements and other constraints - sketch plans, working drawings and site plan.

Text books
1. Rangwala S C., Engineering Materials, Charotar Publishers
2. Shetty M S., Concrete Technology, S. Chand & company.
3. Arora and Bindra, Building construction, Dhanpath Rai and Sons.

Reference Books
6. Huntington W C., Building Construction, John Wiley
8. Kerala Building Rules

University Examination Pattern

<table>
<thead>
<tr>
<th>PART A: Analytical/problem solving SHORT questions</th>
<th>8 x 5 marks = 40 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART B: Analytical/Problem solving DESCRIPTIVE questions</th>
<th>4 x 15 marks = 60 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two questions from each module with choice to answer one question.</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Total Marks: 100

CE14 305: Surveying – I

Teaching Scheme
3 hours lecture and 1 hour tutorial per week

Objective: To acquaint with basic principles & basic instruments related with surveying & leveling.

Module I (13 hours)
Introduction - classification of surveys - reconnaissance - principles - provision of control - conventional signs.

Chain survey - instruments - principles of chain survey - field book - plotting - tie line and check line - chaining and ranging - obstacles - chaining on sloping ground - errors - uses of cross staff and optical square.

Compass survey - prismatic compass - surveyor's compass - whole circle and reduced bearing - true and magnetic bearing - dip and declination - local attraction - traversing - plotting - error of closure - graphical and analytical adjustments.

Module II (13 hours)

Plane table survey - instruments and accessories - different methods - orientation - advantages and disadvantages of plane tabling - two point problem - three point problem - errors.

Module III (13 hours)

Areas and volumes - trapezoidal rule - simpson’s rule - area from latitude and departure - uses of planimeter - volumes - trapezoidal and prismoidal formula

Minor instruments - hand levels - clinometer - ceylon ghat tracer - hypsometer - pantagraph - edigraph - box sextant - telescopic alidade – introduction to modern instruments (Total station, GPS etc).

Module IV (13 hours)

Text Books

Reference books
1. Punmia B.C., Surveying Vol. I &II, Laxmi Publishers

Internal work assessment (Maximum Marks – 50)
60% - Tests(minimum 2)
30% - Assignments (minimum2) such as home work, quiz, literature survey, seminar, term-project.
10% - Regularity in the class.
University Examination Pattern

<table>
<thead>
<tr>
<th>PART A: Analytical/problem solving SHORT questions</th>
<th>8 x 5 marks = 40 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates have to answer EIGHT questions out of</td>
<td></td>
</tr>
<tr>
<td>TEN. There shall be minimum of TWO and maximum</td>
<td></td>
</tr>
<tr>
<td>of THREE questions from each module with total</td>
<td></td>
</tr>
<tr>
<td>TEN questions.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART B: Analytical/Problem solving DESCRIPTIVE questions</th>
<th>4 x 15 marks = 60 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two questions from each module with choice to answer</td>
<td></td>
</tr>
<tr>
<td>one question.</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Total Marks: 100

CE14 306: Engineering Geology

Teaching scheme

3 hours lecture and 1 hour tutorial per week

Credits: 4

Objectives: To make the students familiar with physical and structural geology as well as the basics of mineralogy and petrology.

Module I (13 hrs)

Physical Geology and Environmental Geology

The Earth Science and its sub divisions - scope of Engineering Geology

Geological works of rivers, oceans and wind

Weathering of rocks: products of weathering - influence of climate and lithology on weathering.

Volcanoes: types and causes of volcanism - volcanic products - types of volcanic eruptions and their distribution.

Elements of Engineering Seismology:

Causes of earthquakes - plate tectonics - earthquake mechanism

Earthquake phenomenon – focus, epicentre, seismic waves, magnitude, intensity, intensity scale, and its correlation with ground acceleration - characteristics of strong ground motions and attenuation

Earthquake recording instruments

Secondary effects – land and rock slides, liquefaction, fires, tsunamis, floods, release of poisonous gases and radiation.

Earthquake occurrence - seismic zoning map of India and its use – case studies of important Indian earthquakes - major world earthquakes - earthquake catalogue - assessment of damage - measures for protection of life and property – earthquake resistant structures

Landslides: terminology - classification - causes and controls of landslides

Module II (13 hrs)

Mineralogy and Petrology

Megascopic characters of the important rock forming mineral groups - quartz, feldspar, pyroxene, amphibole, mica and carbonates only

Classification and distinguishing features of igneous, sedimentary and metamorphic rocks - brief description of granite, basalt, dolerite, gabbro, sandstone, shale, limestone, slate, phyllite, schist, gneiss, quartzite and marbles only

Engineering properties of rocks - rocks as construction materials – qualities required for building, dimensional and decorative/ ornamental stones.
Module III (13 hrs)

Structural Geology, Hydrogeology and Exploration Geology

Geological structures and their significance in Civil Engineering projects - folds, faults, joints and unconformities

Origin and occurrence of groundwater – geological formations as aquifer, aquicludes, aquitards and aquifuges - artificial recharge of ground water - quality of ground water – saline water intrusion in coastal aquifers

Importance of ground water investigation in civil engineering projects – ground water exploration – electrical, electromagnetic, gravimetric, radioactive and seismic exploration techniques.

Module IV (13 hrs)

Geoinformatics and Engineering Geology

Remote sensing: Basic principles - role of remote sensing in Civil Engineering - various interpretation techniques in remote sensing

Geographical Information Systems.

Applications of geological knowledge in Civil Engineering projects - dams, bridges, roads, tunnels and multi-storied buildings - geological factors in the design of buildings.

Text books:

1. Kueffer and Lillesand : Remote sensing and Image interpretation
2. Read H.H., Rutleys : Elements of Mineralogy, CBS Publishers
5. Tyrrel .G.W. : Petrology

Reference books:

9. Strahler : Environmental Geology

Internal work assessment (Maximum Marks – 50)

60% - Tests(minimum 2)
30% - Assignments (minimum 2) such as home work, group discussions, quiz, literature survey, seminar, term-project,
10% - Regularity in the class.
University Examination Pattern

PART A: Analytical/problem solving SHORT questions

8 x 5 marks = 40 marks

Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions

4 x 15 marks = 60 marks

Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE 14 307(P) Surveying Lab – I

Teaching Scheme

Credits : 2

3 hours practical per week

Objective: To impart training in Chain, Compass, Plane table surveying & Leveling.

List of exercises

1. Chain & Compass Traversing
 Traversing and plotting of Details
2. Plane table Survey
 Method of Radiation and intersection
3. Plane table Survey
 Solving Two Point Problem
4. Plane table Survey
 Solving Three Point Problem
5. Plane table Survey
 Traverse
6. Leveling
 Fly leveling
7. Leveling
 Longitudinal and cross sectioning
8. Leveling
 Contour surveying
9. Setting out of building plans
10. Theodolite: study of instrument, temporary adjustments, measurement of horizontal and vertical angles.
11. Theodolite traversing
12. Study of Minor instruments: Planimeter, pantagraph, clinometer, hand levels, Quick setting level, Cylon Ghat Tracer, sextent

Internal Continuous Assessment (Maximum Marks-50)

60% - Laboratory practical and record
30% - Test/s
10% - Regularity in the class

Semester End Examination (Maximum Marks-100)

70% - Procedure, conducting experiment, results, tabulation, and inference
20% - Viva voce
10% - Fair record

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
CE 14 308 (P): Materials Testing Lab I

Teaching scheme
3 hours practical per week (Minimum 39 hrs)

Credits: 2

Objective:
To study various properties of building materials

List of experiments
1. Tests on cement
 a) Fineness b) Normal consistency and Setting time c) Soundness d) Compressive strength
2. Test on bricks -
 a) Water absorption b) Efflorescence c) Compressive strength
3. Tests on aggregate for concrete
 a) Physical Properties
 i) Grain size distribution ii) Specific gravity iii) Density iv) Void ratio v) Bulking of sand
 b) Aggregate crushing value
4. Properties of fresh concrete – workability tests
 a) Flow & vee- bee tests b) Slump & Compaction factor test
5. Tests on Timber
 a) Compressive strength – parallel to grain & perpendicular to grain b) Bending tests
4. Test on tiles
 (i) Transverse strength, (ii) Water Absorption of a) Flooring tiles b) Roofing tiles.

<table>
<thead>
<tr>
<th>Internal Continuous Assessment (Maximum Marks-50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60% - Laboratory practical and record</td>
</tr>
<tr>
<td>30% - Test/s</td>
</tr>
<tr>
<td>10% - Regularity in the class</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester End Examination (Maximum Marks-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70% - Procedure, conducting experiment, results, tabulation, and inference</td>
</tr>
<tr>
<td>20% - Viva voce</td>
</tr>
<tr>
<td>10% - Fair record</td>
</tr>
</tbody>
</table>
4th Semester

EN 14 401 (A): Engineering Mathematics IV
(Common for ME, CE, PE, CH, BT, PT, AM, and AN)

Teaching scheme: 3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective
The use of probability models and statistical methods for analyzing data has become common practice in virtually all scientific disciplines. Two modules of this course attempt to provide a comprehensive introduction to those models and methods most likely to be encountered and used by students in their careers in engineering. A broad introduction to some important partial differential equations is also included to make the student get acquainted with the basics of PDE.

Module I: Probability Distributions (13 hours)
- Random variables - mean and variance of probability distributions
- Binomial distribution
- Poisson distribution
- Poisson approximation to binomial distribution
- Hyper geometric distribution
- Geometric distribution
- Probability densities
- Normal distribution
- Uniform distribution
- Gamma distribution.

Module II: Theory of Inference (13 hours)
- Population and samples - sampling distribution
- Sampling distribution of mean (σ known)
- Sampling distribution of mean (σ unknown)
- Sampling distribution of variance
- Interval estimation
- Confidence interval for mean
- Null hypothesis and tests of hypotheses
- Hypotheses concerning one mean
- Hypotheses concerning two means
- Estimation of variances
- Hypotheses concerning one variance
- Hypotheses concerning two variances
- Test of goodness of fit.

Module III: Series Solutions of Differential Equations (13 hours)
- Power series method for solving ordinary differential equations
- Frobenius method for solving ordinary differential equations
- Bessel’s equation
- Bessel functions
- Generating functions (No proof)
- Relation between Bessel functions - orthogonality property of Bessel functions (proof not required).

Module IV: Partial Differential Equations (13 hours)
- Introduction - formation of PDE
- Complete solution - equations solvable by direct integration
- Linear PDE of first order, Lagrange’s equation: Pp + Qq = R - Non-linear PDE of first order, F(p,q) = 0
- Clairaut’s Form: z = px + qv + F(p,q), F(z,p,q) = 0, F1(x,q) = F2(y,q) - Classification of linear PDE’s
- Derivation of one dimensional wave equation and one dimensional heat equation - solution of these equation by the method of separation of variables.
Text Books

Module I:
Richard A Johnson, CB Gupta, Miller and Freund's Probability and statistics for Engineers, 7e, Pearson Education - Sections: 4.1, 4.2, 4.3, 4.4, 4.6, 4.8, 5.1, 5.2, 5.5, 5.7

Module II:

Module III:
Erwin Kreysig, Advanced Engineering Mathematics, 8e, John Wiley and Sons, Inc.-
Sections: 4.1, 4.4, 4.5

Module IV:
Erwin Kreysig, Advanced Engineering Mathematics, 8e, John Wiley and Sons, Inc.
Sections: 11.2, 11.3, 9.8 Ex.3, 11.5

Reference books

Internal Continuous Assessment (Maximum Marks=50)

60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Attendance and Regularity in the class
University Examination Pattern

<table>
<thead>
<tr>
<th>PART A: Analytical/problem solving SHORT questions</th>
<th>8 x 5 marks = 40 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART B: Analytical/Problem solving DESCRIPTIVE questions</th>
<th>4 x 15 marks = 60 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two questions from each module with choice to answer one question.</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Total Marks: 100

EN 14 402 Environmental Science

(Common for all branches)

Teaching scheme

3 hours lecture and 1 hour tutorial per week

Credits: 4

Objectives

- To understand the problems of pollution, deforestation, solid waste disposal, degradation of environment, loss of biodiversity and other environmental issues at local and global levels.
- To create awareness among the students to address these issues and conserve the environment in a better way.

Module I (13 hours)

The multidisciplinary nature of environmental science - definition - scope and importance - need for public awareness - natural resources - renewable and non-renewable resources: natural resources and associated problems - forest resources: use and over-exploitation, deforestation, case studies. timber extraction, mining, dams and their effects on forests and tribal people - water resources: use and over utilization of surface and ground water, floods, drought, conflicts over water, dams - benefits and problems. - mineral resources: use and exploitation, environmental effects of extracting and using mineral resources, case studies. - food resources: world food problems, changes caused by agriculture over grazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies - energy resources: growing energy needs, renewable and non-renewable energy resources, use of alternate energy resources, land resources: land as a resource, land degradation, man-induced landslides, soil erosion and desertification.

Module II (13 hours)

Ecosystems - concept of an ecosystem - structure and function of an ecosystem - ecological succession - food chains, food webs and ecological pyramids - introduction, types, characteristics features, structure and function of the following ecosystems: forest ecosystem, grassland ecosystem, desert ecosystem, aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries).

Module III (13 hours)

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
Environmental pollution: definition, causes, effects and control measures of: air pollution - water pollution - soil pollution - marine pollution - noise pollution - thermal pollution - nuclear hazards - Solid waste management: causes, effects and control measures of urban and industrial wastes; e-waste management - role of an individual in prevention of pollution - pollution case studies - disaster management: floods, earth quake, cyclone and landslides - environmental impact assessment

Module IV (13 hours)
Environment and sustainable development - Sustainable use of natural resources - conversion of renewable energy resources into other forms - case studies - problems related to energy and energy auditing - water conservation, rain water harvesting, watershed management - case studies - climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust - waste land reclamation - consumerism and waste products - reduce, reuse and recycle concept of products - value education for environment conservation, global conservation movements and agreements, green economy, carbon foot print, carbon trading.

Text Books:
1. Daniels & Krishnaswamy, Environmental studies, Wiley India Pvt Ltd, 2009

References:
2. S.P Misra, S.N Pandey, Essential Environmental studies, Ane books, Pvt Ltd, 2009

Internal Continuous Assessment (Maximum Marks-50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Attendance and Regularity in the class

Note: Field work can be visit to a local area to document environmental assets - river/forest/grass land/mountain or visit to local polluted site - urban/rural/industrial/agricultural etc. or study of common plants, insects, birds etc. or study of simple ecosystems - pond, river, hill slopes etc. or mini project work on renewable energy and other natural resources, management of wastes etc.
University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE 14 403: Fluid Mechanics

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective:
- This course gives an introduction to the fundamentals of fluid flow and its behavior so as to equip the students to learn related subjects and their applications in the higher semesters.

Module I (13 hours)

Module II (13 hours)
Fluid dynamics - forces influencing fluid motion - types of forces - body and surface forces - energy and head - equations of fluid dynamics - Euler equation and application - integration of Euler equation to get Bernoullis’ equation - momentum equation - vortex motion - free and forced vortex - application of Bernoullis’ equation in measurement of flows - stagnation pressure - pitot tube, prandtl tube, venturi meter, orifice plate - flow nozzles, orifices, mouthpieces, notches and weirs.

Module III (13 hours)
Pipe flow - transition from laminar flow to turbulent flow - problems in pipe flow - losses in pipe flow - major and minor losses - losses in transition - losses in fittings and valves - friction loss in pipe - coefficient of friction - commercial pipes in use - different arrangements of pipes - pipes open to atmosphere - pipe connecting reservoirs - branching pipes - pipes in parallel and series - equivalent lengths - power transmission in pipes - waterhammer - cavitation - syphons - laminar flow in pipes - Hagen Poisuisse’s equation.

Module IV (13 hours)
Dimensional analysis - scope of dimensional analysis - dimensions - dimensional homogeneity - dimensional groups - dimensional analysis using Buckingham’s π theorem method - examples on pipe

Text books:

Reference books:
2. Garde R.J., Fluid Mechanics Through Problems, Wiley eastern
4. Duncan, Tom & Young, Fluid Mechanics, ELBS

Internal Continuous Assessment (Maximum Marks - 50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

Note: Students shall be encouraged to solve problems using software like spreadsheet, MATLAB etc.)

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8 x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE14 404: Structural Analysis - 1

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Objectives
- To equip the students with the comprehensive methods of structural analysis with emphasis on analysis of elementary structures.
Module 1 (13 hours)

Displacement response of statically determinate structural systems using energy methods:
Elastic theorems and energy principles - strain energy due to axial load, bending moment, shear and torsion - principle of superposition - strain energy method, Castigliano’s method, and unit load method.

Principle of virtual work - Castigliano’s theorem for deflection - theorem of complementary energy - Betti’s theorem - Maxwell’s law of reciprocal deflections - principle of least work - application of unit load method and strain energy method for determination of deflection of statically determinate frames - pin jointed trusses - temperature effects, lack of fit.

Module II (13 hours)

Statically indeterminate structures:
Degree of static and kinematic indeterminacies - force and displacement method

Strain energy method
Analysis of beams, frames and trusses with internal and external redundancy - effect of prestrain, lack of fit, temperature changes, support settlement.

Method of Consistent deformations:
Analysis of beams, frames and trusses with internal and external redundancy - effect of prestrain, lack of fit, temperature changes, support settlement.

Module III (13 hours)

Moving loads and influence lines.

Introduction to moving loads - concept of influence lines - influence lines for reaction, shear force and bending moment in simply supported beams and over hanging beams - Muller Breslau principle - application to propped cantilevers - influence lines for forces in beams and trusses analysis for different types of moving loads - single concentrated load - several concentrated loads uniformly distributed load shorter and longer than the span.

Module IV (13 hours)

Cables, suspension bridges and arches.

Statically determinate suspension bridges and arches
Analysis of forces in cables - temperature effects - suspension bridges with three hinged stiffening girders - theory of arches - Eddy’s theorem - analysis of three hinged arches.

Statically indeterminate suspension bridges and arches
suspension bridges with two hinged stiffening girders - analysis of two hinged arches - settlement and temperature effects.

Text books:
1. Gere and Timoshenko, Mechanics of materials, CBS. Publishers
4. Hibbeler., Structural Analysis, Pearson Education
5. Daniel L Schodak, Structures, Pearson Education/Prentice Hall India
6. Devdas Menon, Structural Analysis, Narosa Publications
7. M.L. Gambhir, Fundamentals of structural Mechanics and analysis, PInrice Hall India

References:
1. Kinney S., Indeterminate Structural Analysis, Oxford & IBH
2. Coates, Coutie and Kong , Structural Analysis, ELBS Publishers
5. Harry H West & Louis F Geschwindner, Fundamentals of Structural Analysis, Wiley India Publishers

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
University Examination Pattern

PART A: Analytical/problem solving SHORT questions
8x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions
4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE14 405 Engineering Economics and Principles of Management
(Common for CE, EE, EC, AI and BM)

Teaching scheme
Credits: 4

2 hours lecture and 2 hours tutorial per week

Section 1: Engineering Economics

Teaching scheme

1 hour lecture and 1 hour tutorial per week

Objective

The prime objective of the *Engineering Economics* course is to make students familiar with the economic way of thinking. This course provides the students with the foundations of economic theory, tools and techniques for use in the process of efficient economic decision-making in their engineering and managerial profession.

Module 1 (13 hours)

Introduction to engineering economics - technical efficiency, economic efficiency - cost concepts: elements of costs, opportunity cost, sunk cost, private and social cost, marginal cost, marginal revenue, profit maximisation, break-even analysis.
Supply and demand: determinants of demand, law of demand, determinants of supply, law of supply, market equilibrium - elasticity of demand - types of elasticity, factors affecting the price elasticity of demand.

National income concepts: GDP and GNP, per capita income, methods of measuring national income, inflation and deflation: concepts and regulatory measures - monetary policy and fiscal policy.

Module II (13 hours)
Value Analysis - time value of money - interest formulae and their applications: single-payment compound amount factor, single-payment present worth factor, equal-payment series compound amount factor, equal-payment series sinking fund factor, equal-payment series present worth factor, equal-payment series capital recovery factor, effective interest rate.
Investment criteria: payback period, net present value, internal rate of return, benefit-cost ratio.

Text Books

Reference Books

Internal Continuous Assessment (Maximum Marks-25)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Attendance and Regularity in the class

University Examination Pattern for Section 1

PART A: Analytical/problem solving SHORT questions 4x 5 marks=20 marks
Candidates have to answer FOUR questions out of FIVE. There shall be minimum of TWO and maximum of THREE questions from each module with total FIVE questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 2 x 15 marks=30 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 50

University Examination Pattern – for Section 1
Note: Section 1 and Section 2 are to be answered in separate answer books
Maximum 50 marks each for Section 1 and Section 2
Section 2: Principles of Management

1 hour lecture and 1 hour tutorial per week

Objective

- To provide knowledge on principles of management, decision making techniques, accounting principles and basic management streams

Module I (13 hours)
Principles of management - evolution of management theory and functions of management organizational structure - principle and types - decision making - strategic, tactical & operational decisions, decision making under certainty, risk & uncertainty and multistage decisions & decision tree human resource management - basic concepts of job analysis, job evaluation, merit rating, wages, incentives, recruitment, training and industrial relations.

Module II (13 hours)

Reference Books
1. F. Mazda, Engineering management, Addison Wesley, Longman Ltd., 1998
2. Lucy C Morse and Daniel L Babcock, Managing engineering and technology, Pearson, Prentice Hall
8. Weist and Levy, A Management guide to PERT and CPM, Prantice Hall of India

Internal Continuous Assessment (Maximum Marks-25)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Attendance and Regularity in the class
University Examination Pattern for Section 2

PART A: Analytical/problem solving SHORT questions \[4 \times 5 \text{ marks} = 20 \text{ marks}\]

Candidates have to answer FOUR questions out of FIVE. There shall be minimum of TWO and maximum of THREE questions from each module with total FIVE questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions \[2 \times 15 \text{ marks} = 30 \text{ marks}\]

Two questions from each module with choice to answer one question.

Maximum Total Marks: 50

University Examination Pattern – for Section 2

Note: Section 1 and Section 2 are to be answered in separate answer books

Maximum 50 marks each for Section 1 and Section 2
CE14 406: Surveying II

Teaching Scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective:
- To understand advanced concepts of surveying by using basic instruments to study modern trends in surveying.

Module I (13 hours)
Permanent adjustments of theodolite
Tacheometric surveying - stadia system - fixed and movable hair methods - staff held vertical & normal - instrument constants - anallactic lens - tangential system - subtense bar
Trigonometric leveling - observations for heights & distances
Hydrographic survey - scope - shoreline survey - soundings - sounding equipment - methods - ranges - locating sounding - plotting - three point problem

Module II (13 hours)

Module III (13 hours)
Field astronomy - definitions - solution of an astronomical triangle - co-ordinate systems - time - solar, sidereal and standard equation of time - sundial - determination of time, azimuth, latitude and longitude.
Photogrammetry - fundamental principles of ground and aerial photogrammetry - analytical and graphical methods - field work - photo-theodolite and its use - methods of aerial surveying - interpretation of air photographs.

Module IV (13 hours)
Introduction to remote sensing & geographic information system - classification of remote sensing - idealised RS system - basic principles of remote sensing - remote sensing platforms & sensors (types only) - applications of remote sensing (listing only). [Text Book: Punmia, Vol II Ch 16]
Fundamentals of GIS - map projections - Raster & Vector data - definition of GIS - components of a GIS - Geospatial data - GIS operations - GIS models & modelling. (only brief descriptions of all these items) [Text Book: Kang - tsung Chang, Ch 1&2, GIS]
Introduction of modern instruments - electronic distance measuring - total station - types, working principles, measurement techniques and error corrections - automatic levels.

Text books:

Reference books
Internal Continuous Assessment (Maximum Marks - 50)

60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, quiz, literature survey, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8 x 5 marks = 40 marks
Candidates have to answer FOUR questions out of FIVE. There shall be minimum of TWO and maximum of THREE questions from each module with total FIVE questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE14 407(D): Civil Engineering Drawing I

Teaching scheme Credits: 2
3 hours per week (39 hrs)

Objectives
• To make the students aware about the basic principles of Building Drawing
• To make the students to know Basic commands of a popular drafting package
• Make the students to draw plan, elevation and section of buildings

Module 0: Introduction of a Popular Drafting Package (6 Hours)
• Basic Commands and simple drawings

Module 1: Detailed drawing of Components (15 Hours)
• Panelled doors, glazed windows and ventilators in wood (2 Sheets)
• Steel windows (1 Sheet)
• Roof truss in structural steel sections (2 sheets)
• Reinforced Concrete staircase (2 sheets)

Module II: From given line sketch and specification, develop Working drawings (plan, elevation and section) of the following buildings (18 Hours)
• Single storied residential building with flat and tiled roof (4 Sheets)
• Public buildings like office, dispensary, post office, bank etc. (3 sheets)
• Factory building with trusses supported on Brick walls and pillars (2 sheets)
Assignment: Preparing drawings (plan, section and elevation) in any popular drafting package.

Reference Books:
Balagopal T.S. Prabhu, Building drawing and detailing, Spades Publishers
Shah & Kale, Building Drawing, Tata McGraw Hill
B.P. Verma, Civil Engineering Drawing and housing Planning, Khanna Publishers

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
Internal Continuous Assessment (Maximum Marks=50)

Any 5 sheets in Module 1 - 5 x 2 = 10 marks
Any 6 sheets in Module II – 6 x 2 = 12 Marks
Assignment - 8 marks
Test - 15 marks
Regularity - 5 marks
Total - 50 marks

University Examination pattern: (Maximum Marks=100)

No Questions from Module 0

Part A:
3 Questions of 15 marks each, from Module I, with Choice to answer any two (2 x 15 = 30 marks)

Part B:
One compulsory question of 70 marks from Module II (1 x 70=70 marks)
Total - 100 marks

CE 13 408 (P): Surveying Lab II

Teaching Scheme Credits: 2
3 hours practical per week (Minimum 39 hrs)

Objective

• To give a practical knowledge in different aspects of Theodolite Surveying, Tacheometry & Total Station

List of exercises
1. Theodolite surveying - horizontal angle by repetition & reiteration methods.
2. Determination of tacheometric constants
3. Heights and distances by stadia tacheometry
4. Heights and distances by tangential tacheometry
5. Heights and distances by solution of triangles
6. Vertical Plane Method
7. Setting out of simple curves - linear methods
8. Setting out of simple curves - angular method
9. Study of modern instruments - Automatic levels and Electronic theodolite, GPS
10. Total station - Horizontal and vertical angles, Horizontal distance, Level difference, traversing & Area calculation.
11. Contour Map preparation using Total Station
12. Curve Setting using Total Station

Internal Continuous Assessment (Maximum Marks=50)

60% - Laboratory practical and record
30% - Test/s and term project
10% - Regularity in the class

Semester End Examination (Maximum Marks=100)

70% - Procedure, conducting experiment, results, tabulation, and inference
20% - Viva voce
10% - Fair record

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
5th Semester

CE 14 501: Structural Design I

Teaching Scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective
• To provide the students with the knowledge of the behaviour of reinforced concrete structural elements in flexure, shear, compression, tension and torsion, and to enable them to design such elements under various loads.

Module I (13 Hours)

Module II (13 Hours)
Limit State Method of design of RCC beam sections – principles and assumptions - characteristic strength and characteristic loads - partial safety factors – limit states-comparison with Working Stress Method, advantages - moment of resistance of singly and doubly reinforced rectangular and flanged beam sections- design of singly and doubly reinforced rectangular and flanged beam sections subjected to flexure, shear and torsion using Limit State Method - flexural and anchorage bonds, development length.

Module III (13 Hours)
Design and detailing of simply supported, cantilever and continuous RCC beams- IS Code coefficients for continuous beams - design and detailing of one way simply supported and continuous RC slabs - design and detailing of two way RCC slab with various support conditions using IS Code coefficients.

Module IV (13 Hours)
Design of stairs - general principles - design and detailing of various types of stairs - stairs with waist slab, stringer beam stairs, and stairs with cantilever steps - dog legged and folded plate stairs. Design and detailing of RC columns by Working Stress Method - general principles - axially loaded short and long columns – helically reinforced columns –design and detailing of RC tension members by Working Stress Method.

Text Books
1. Pillai S. U. and Menon D., Reinforced Concrete Design, Tata McGraw Hill
3. Varghese P. C., Limit State Design of Reinforced Concrete, Prentice Hall of India
Reference Books
1. Park and Paulay, Reinforced Concrete
4. Jain and Jaikrishna, Plain and Reinforced Concrete Vol I, Nemchand
6. Purushothaman, Behaviour, Analysis and Design of Reinforced Concrete Elements, Tata

Internal Continuous Assessment (Maximum Marks-50)
60% - Tests (minimum 2)
15% - Assignments (minimum 2) such as home work, problem solving, quiz, seminar, software exercises, etc.
15% - assignment/ term project to familiarise the SP: 34 code
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions
8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100
CE14 502: Building Technology –II

Teaching Scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective:
• To impart the basic concepts in functional requirements of building and building services.
• To develop understanding about framed construction, building failures and earthquake resistant construction.

Module I (13 hours)

Module II (13 hours)
Fire safety – Fire resistant construction – fire load – fire resisting properties of materials – precautionary measures against origin and spread of fire – Alarm systems – hydrants – sprinklers – fire escape – requirements of high rise construction
Plumbing services – Typical details of water supply and sewage disposal for single and multistoreyed buildings – systems of plumbing - standard requirements.

Module III (13 hours)
Lighting – photometric quantities – types of visual tasks - lighting requirements of various buildings – day lighting – day light factor – need for artificial lighting.

Module IV (13 hours)
Introduction to Cost-effective construction – principles of filler slab and rat-trap bond masonry

Text books:
3. Arora and Bindra, Building construction, Dhanpath Rai and Sons.
4. Rangwala, S C Building Construction, Charotar Publishing House
University of Calicut Syllabus - B.Tech – Civil Engineering - 2014

References:
7. Code of practice for earthquake resistant design and construction of buildings, IS:4326-1993
9. Tall building systems & concepts, Monograph on planning and design of Tall building, council on Tall buildings and Urban Habitat.
10 Patil, S.M., Building Services, Sachin Printers, Mumbai

Internal Continuous Assessment (Maximum Marks-50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, quiz, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100
CE 14 503: Transportation Engineering I

Teaching Scheme
3 hours lecture and 1 hour tutorial per week

Objective:
To build a strong, stable and deep concept on different means of transportation and to equip the students to plan, and design various structures and traffic control devices coming under two modes of transportation viz: Highways and Airports

Module I (15 hours)
Introduction - Role of transportation in society- Different modes of transport- Importance of roads in India- classification of roads - road patterns -typical cross sections of roads in urban and rural areas - requirements and factors controlling alignment of roads - engineering surveys for highway location.
Highway geometric design - pavement surface characteristics - camber and width requirements – sight distances - stopping and overtaking sight distances - overtaking zone requirements - design of horizontal alignment – speed – radius - super elevation - methods of providing super elevation - extra widening of pavements - transition curves - design of vertical alignment - gradient - grade compensation – summit curves and valley curves - worked out problems

Module II (13 hours)
Traffic Engineering:
Introduction - road user, vehicle and traffic characteristics - traffic engineering studies – speed – speed and delay - volume - origin and destination - parking and accident studies - worked out problems –
Road intersections- principles of design of at grade intersection - simple layouts
Traffic operation- Traffic control devices- classifications and uses of traffic signs and markings – traffic signals – signal co-ordination- design of isolated signals by Webster’s method

Module III (12 hours)
Highway materials-Desirable properties and testing of highway materials –subgrade soil, road aggregates and bituminous materials
Design of flexible and rigid pavements - IRC methods - worked out problems
Construction -- bituminous concrete and cement concrete pavements
Failures in pavements - flexible and rigid pavements

Module IV (12 hours)
Airport planning and design:-
Introduction - aircraft characteristics and their influence on planning of airports –classification of airports- airport obstructions and zoning - component parts of airports and site selection - runway design - orientation - basic runway length - corrections to basic runway length - worked out problems- geometric design of runways; design of taxiways and aprons – Controlling of air traffic-Operation of instrument landing system-terminal area planning concepts and its facilities - aircraft parking configurations

Text books:
Objectives

- To equip the students with the force and displacement methods of structural analysis with emphasis on analysis of rigid frames and trusses

Module I (16 Hours)

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
Slope Deflection Method and Moment Distribution Method
Review of force method and displacement methods of analysis
Slope Deflection method - analysis of continuous beams - beams with overhang - analysis of rigid frames - frames without sway and with sway - different types of loads - settlement effects
Moment Distribution method – analysis of beams and frames – non sway and sway analysis – frames with sloping legs – gabled frames

Module II (13 Hours)
Clapeyrons Theorem (Three Moment Equation) and Kani’s Method
Derivation of three moment equation - application of three moment equation for analysis of continuous beams under the effect of applied loads and uneven support settlement.
Kani’s Method of analysis applied to continuous beams and rigid frames of different geometry - frames without sway and with sway.

Module III (13 Hours)
Approximate Methods of Analysis of Multistoried Frames
Analysis for vertical loads - substitute frames - loading condition for maximum hogging and sagging moments in beams and maximum bending moment in columns - wind load analysis of multistoried frames – portal method and cantilever method for lateral load analysis.
Beams curved in plan - Analysis of cantilever beam curved in plan - analysis of circular beams over simple supports.

Module IV (10 Hours)
Plastic Theory

Reference Books:
3. Timoshenko S. P. and Young D. H., Theory of Structures, McGraw Hill
6. Rajasekaran S. and Sankarasubramanian G., Computational Structural Mechanics, PHI
7. SP:6 (6): Application of Plastic Theory in Design of Steel Structures

Text Books:
1. R.Vaidyanathan and P.Perumal, Comprehensive Structural Analysis Volume I & II, Laxmi Publications (P) Ltd.
2. Hibbeler, RC, Structural analysis, Pearson Education
3. Daniel L. Schodak, Structures, Pearson Education
4. Devdas Menon, Structural Analysis, Narosa Publications
6. S.S. Bhavikatti, Structural Analysis, Vikas Publication Houses (P) Ltd
University Examination Pattern

PART A:
Analytical/problem solving SHORT questions 8 x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B:
Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE14 505: Geotechnical Engineering I

Teaching Scheme
Credits: 4
3 hours lecture and 1 hour tutorial per week

Objectives
To equip the students to understand the properties and behavior of soil for the design of foundations, earth and earth retaining structures.

Module I (13 hours)
Nature of soil and functional relationships: Formation of soils - Soil type - 3 phase system - void ratio - specific gravity - dry density - porosity - water content - saturated unit weight - submerged unit weight - degree of saturation – Soil Structure: single grained, honey combed, flocculated and dispersed structure and their effects on the basic soil properties.
Laboratory and field identification of soils: Determination of water content by oven drying – Specific gravity using pycnometer and specific gravity bottle - Grain size analysis by sieve analysis, hydrometer analysis and pipette analysis - Atterberg limits and indices – Visual identification by simple field tests – Field density by core cutter, sand replacement and wax coating methods
Classification of soils: Necessity - Principles of classification - I.S. classification – Plasticity charts

Module II (13 hours)
Soil water: Modes of occurrence – adsorbed and capillary water types - Total stress - Effective stress – Pore pressure - Pressure diagrams
Permeability: Definition - Darcy’s law - Factors affecting permeability – Laboratory determination - Stratified soils : average permeability.
Shear Strength: Definition - Mohr’s strength and stress circles - origin of planes - Mohr’s envelope - Mohr- Coulomb strength theory –Direct shear test – triaxial shear test - drainage conditions – UU, CU and CD tests - Measurement of pore pressure -Total and effective stress strength parameters - UCC test - Vane shear tests - Choice of test conditions for field problems.

Module III (13 hours)
Consolidation: Definition –Spring analogy for primary consolidation - Terzaghi’s theory of one dimensional consolidation – Concepts of coefficient of compressibility - Coefficient of volume change and compression index – Laboratory consolidation test - e-log p curves - pre-consolidation pressure - Time rate of consolidation - difference between consolidation and compaction
Compaction: Definition and objectives of compaction – Standard and Modified Proctor tests - Concept of OMC and maximum dry density - Zero air voids line - Factors influencing compaction - Effect of compaction on soil properties - Field compaction methods - Proctor needle for field control.

Module IV (13 hours)
Earth pressure: Earth pressure at rest - Active and passive earth pressure for cohesionless and cohesive soils - Rankine’s and Coulomb’s theories - Point of application of earth pressure for cases of with and without surcharge in cohesionless and cohesive soils - Culmann’s and Rebhan’s graphical construction for active earth pressure-
Stability of slopes: Slope failure, base failure and toe failure - Swedish circle method – Φ = 0 analysis and c = 0 analysis - Friction circle method - Taylor’s stability number - Stability charts.

Text Books

Reference Books
4. Khan I.H., Text Book of Geotechnical Engineering, Prentice Hall of India

Internal work assessment (Maximum Marks – 50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, group discussions, quiz, literature survey, seminar, term-project..
10% - Regularity in the class.

University Examination Pattern
PART A:
Analytical/problem solving SHORT questions 8x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B:
Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.
Maximum Total Marks: 100

CE 14 506: Open Channel Hydraulics and Hydraulic Machinery

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Objective:
• To learn, understand and develop concepts regarding the types of free surface flow and their applications in order to have adequate background for the design of various hydraulic structures.
Module I (13 hours)

Module II (13 hours)
Non uniform flow: gradually varied flow - basic assumptions - dynamic equation for gradually varied flow - different forms of the dynamic equation - characteristics of flow profiles in prismatic channels. Back water curve: computation of length of back water curve - Standard step method- direct step method – computation of backwater profile using spreadsheet. Stream flow measurement - gauges and recorders - determination of velocity of flow - measurement of discharge in rivers - area-velocity method - stage - discharge relation

Module III (11 hours)
Rapidly varied flow: characteristics of the flow - hydraulic jump - initial and sequent depths - nondimensional equation - practical application of hydraulic jump - types of jump in horizontal floor - basic characteristics of the jump - energy loss - efficiency - height of jump - jump as energy dissipater - stilling basins - jump position - tail water conditions - jump types - stilling basins of generalized design – rapidly varied unsteady flow – introduction to surges and types of shallow water waves (Numerical examples not expected)

Module IV (15 hours)
Impact of free jets: forces on plates – fixed and moving – flat and curved – equation for work done – velocity triangle. Hydraulic machines

Text book:
Modi P.N. & Seth S.M., Hydraulics & Fluid Mechanics, Standard Book House
Subramanya K., Flow in Open Channels, Tata McGraw Hill

Reference books:
1. Hanif Choudhary M., Open Chanel Flow, Prentice Hall of India
2. Chow V.T., Open Channel Hydraulics, McGraw Hill
4. Addison H., A Treatise on Applied Hydraulics, Asia Publishing House
5. Michael, Wells and Pumping Machinery
Internal work assessment (Maximum Marks – 50)
- 60% - Tests (minimum 2)
- 30% - Assignments (minimum 2) such as homework, group discussions, quiz, literature survey, seminar, term-project.
- 10% - Regularity in the class.

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8 x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE 14 507(D): Civil Engineering Drawing II

Teaching scheme
3 hours/week (39 hrs)

Credits : 2

Objective
- To make the students to be able to plan and draw different views of Building according to State Building rules.
- To make the students to draw different views of Building in drafting packages.
- (The student is expected to know the local building rules and National Building Code provisions. After the course, the student should be in a position to prepare building sketches for the clients and submission drawings for approval. Each student shall complete a term project in tracing paper).

Module 1: (6 Hours)
- Review of principles of building planning, building rules and building codes

Module 2: (24 hours) Planning from given requirements of areas and specifications and preparation of Sketch & working drawings for:
- Different types of residential buildings- Single and two storied with RCC (flat & sloped) roof, Two storied Flats. (4 sheets)
- Planning of simple tile roof building. (2 sheets)
- Variety of Public Buildings- Small public utility shelters, dispensaries, libraries, schools, banks, hostels, offices, factories etc. (5 sheets)

Module 3: (9 hours)
1. Preparation of site plan and service plans as per building rules. (2 sheets)
2. Building Services (for single and two storied buildings only). (1 sheet)
3. Septic tanks and soak pit detailed drawing. (1 sheet)

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
Term Project:
Plan and Prepare drawings of Double storied RCC building of at least 300 sq.m. carpet area, as per prevailing building rules, on any fictitious plot, with all detailed specifications in any popular drafting package.

Reference Books:
1. National Building Code of INDIA
2. Kerala Building rules
3. Balagopal T.S. Prabhu, Building drawing and detailing, Spades Publishers

Internal assessment
Any 10 Sheets – 20 marks
Term Project- 15 marks
Test - 10 marks
Regularity - 5 marks
Total - 50 marks

University Examination Pattern
Part A:
One compulsory question from Module 2 – 1 x 70 = 70 marks
Note:- Marks for this question might be apportioned as follows:
Aspects of planning : 25 marks
Plan, Section, Elevation : 15 marks each = 15 x 3 = 45
Part B:
Candidates have to answer TWO questions out of THREE. All the three questions shall be from Module 3. 2 x 15 = 30 marks
Total Marks : 100

CE14 508 (P): Fluid Mechanics Laboratory

Teaching scheme Credits: 2
3 hours practical per week (Minimum 39 hrs)

Group A
2. Demonstration: Bernoulli’s theorem - phreatic lines - fluming horizontally and vertically
3. Steady flow through pipes: determination of friction factor for various types of pipes
4. Orifices and mouthpieces: various types-steady case
5. Notches and weirs: various types-steady case
6. Time of emptying: unsteady flow
7. Discharge measurements: venturimeter - venturi flume - orifice meter - water meter

Group B
8. Open channel flow: determination of Manning’s coefficient
9. Plotting the specific energy curve
10. Tracing back water profiles / draw down profiles

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
11. Hydraulic jump parameters

Group C

12. Study of pelton wheel - Francis-Kapalan turbines
13. Study of centrifugal - reciprocating - jet and deep well pumps
15. Air flow measurement using air blowers.

<table>
<thead>
<tr>
<th>Internal Continuous Assessment (Maximum Marks-50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60% - Laboratory practical and record</td>
</tr>
<tr>
<td>30% - Test/s</td>
</tr>
<tr>
<td>10% - Regularity in the class</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>End Semester Examination (Maximum Marks-100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70% - Procedure, conducting experiment, results, tabulation, and inference</td>
</tr>
<tr>
<td>20% - Viva voce</td>
</tr>
<tr>
<td>10% - Fair record</td>
</tr>
</tbody>
</table>
6th Semester

CE14 601: Structural Design II

Teaching Scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objectives
- To provide the students with the requisite knowledge and skill in structural steel design so as to enable them to carry out design of various structural elements and their connections as per the latest Code of Practice, and to help them appreciate the various advantages of structural steel in design and construction.

Module I (13 hours)
Structural steel connections – classification of connections, simple, rigid and semi rigid connections, types of fasteners. Bolts and bolting - grades of bolts, design strength of ordinary and HSFG bolts, bolt groups, net and gross areas of plate, design strength of plate, analysis and design of bolted (ordinary and HSFG) connections, pins – analysis and design of pinned connections under axial loads. Welds - welding process, grades of electrodes, types and properties of welds, effective areas of welds, design strength of welds, weld groups, analysis and design of welded connections under axial loads.

Module II (13 hours)
Tension members – types, behavior and modes of failure of tension members, design of tension members of single angle, double angle and other sections, tension rods, lug angles, splices, gussets.
Compression members – local buckling of plates, cross section classification, behavior of compression members, effective length, analysis and design of single angle and double angle struts, other single sections and built-up sections - design of battens and lacings, analysis and design of eccentrically loaded columns of single and built-up sections.
Column bases – types of bases, design of slab base and gusseted base, column caps.

Module III (13 hours)
Flexural members and beams – beam types, section classification, lateral stability, lateral torsional buckling of beams of symmetric sections, behavior of beams in bending, design strength of laterally supported and laterally unsupported beams in bending, shear strength of steel beams, allowable deflection of beams, web buckling and web crippling, analysis and design of laterally restrained & unrestrained beams of single and built up sections.
Column-beam connections – types of moment connections, moment resistant connections with bolts and welds for in-plane and out-of-plane moments.

Module IV (13 hours)
Design of roof trusses - types of roof trusses, selection of trusses, design loads and load combinations, assessment of loads due to wind, design principles, design of purlins, design of joints, design of members.
Gantry girders - special loads in gantry girders, maximum load effects, fatigue effects, bracings, analysis and design of gantry girders considering moment and shear capacities, web buckling, web crippling, deflection and fatigue strength.
Note:
All designs shall be done as per the current specifications and standards of Bureau of Indian Standards
Special importance shall be given to detailing in designs
S.I. units shall be followed
IS: 800, IS: 875 and SP: 6 shall be permitted in the examination hall.

Text Books:

Reference Books:

Internal Continuous Assessment (Maximum Marks - 50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100
CE 14 602: Transportation Engineering II

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective:
To provide a strong base in planning, designing, construction and maintenance of structures coming under railways, waterways and tunnelling and to introduce the basic principles of economic analysis of projects.

Module I (15 hours)
Permanent way: functions and requirements of permanent way - components - typical cross sections - gauges - functions and requirements of components of permanent way - sleeper density - coning of wheels creep and wear in rails - rail fasteners - defects, failures and joints in rails - material assessment for unit length of track - Geometric design of railway track - horizontal curves - super elevation - cant deficiency - negative super elevation - safe speed on curves - gradients and grade compensation - worked out problems

Module II (15 hours)
Signalling and interlocking - signal control systems - points and crossings - track junctions – track circuiting - track alignment - construction of railway track - railway stations and yards.
Railway construction and maintenance:- Construction of railway track- earth work plate laying and packing-maintenance of track - alignment - gauge-renewal of component parts-drainage - modern methods of track maintenance.
Tunneling:- Location survey and factors to be considered - different sections - shafts - transferring of centre line - methods of tunneling in hard rocks and soft soils - different methods for lining, ventilation, lighting and drainage

Module III (11 hours)
Elements of harbour - ports - various design considerations of a harbour - classifications - site selection factors - wet and dry docks - lock and lock gates - site selection, configuration and types of breakwaters - details of quays, piers, fenders, dolphins, slipways - transit shed and warehouse - navigational aids

Module IV (11 hours)
Transportation Planning
Classification of transport technologies-inter modal co-ordination - ITS and automated highways – salient features of first, second and third and forth road development plans in India - planning surveys and master plan preparations - Expressways - case studies-
Highway Economics - Principles of economic evaluation – road user benefits - highway cost – economic evaluation by annual cost, benefit cost ratio and net present value method - worked out problems

Text books:
2. Subhash C Saxena and Satyapal Arora, A Text Book of Railway Engineering, Dhanapat Rai and Sons, NewDelhi

References:
3. P. Sreenivasan, Dock and Harbour Engineering,
Objective: Students are expected to realize the importance of water resources and its application in irrigation engineering.

Module I (13 hours)
Introduction: hydrologic cycle - application of hydrology in engineering - water balance equation - water resources of India.
Precipitation: Types, forms and measurement of precipitation - network design - presentation of data - average precipitation over an area - mass curve and hyetograph - double mass curve - depth-area-duration and intensity - duration-frequency analysis - probable maximum precipitation.
Precipitation Abstractions
Evaporation - factors affecting evaporation - measurement and control of evaporation
Evapotranspiration - measurement of evapotranspiration - estimation of evapotranspiration - Penman’s Equation - Blaney Criddle Equation (No numerical problems are expected).
Infiltration Process - measurement using infiltrometers - infiltration capacity - infiltration indices.
Runoff - Characteristics of runoff - factors affecting runoff - yield from a catchment.

Module II (13 hours)
Irrigation - necessity - advantages - disadvantages - types - flow and lift irrigation - perennial and inundation irrigation - methods of irrigation-flooding, furrow, sprinkler and drip - important crops and crop seasons - duty and delta - water requirement - irrigation efficiency - direct and storage irrigation - multipurpose projects
Reservoir - types - investigation and planning - selection of site - fixation of storage capacity - flow duration curves - flow mass curve - reservoir sedimentation
Head works: - storage and diversion works - selection of site - Component and layout of Diversion head works - Head regulator and cross regulator (no design) - silt excluder and silt extractor - weirs - types of weirs - seepage theories - Biligh’s and Khosla’s theory - method of independent variables.

Module III (13 hours)

Module IV (13 hours)

Text books
3. Dr. Modi P.N., Irrigation Water Resources & Water Power, Standard publishers
4. Asawa, Irrigation Engineering, Wiley Eastern

Reference books
1. Regunath H.M., Hydrology, Prentice Hall
2. Chow V.T et. al., Applied Hydrology, McGraw Hill
4. Sahasrabudhe S.R., Irrigation Engineering & Hydraulic Structures
7. S.K Garg, Irrigation Engineering and Hydraulic structures, Khanna publishers

Internal Continuous Assessment (Maximum Marks=50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class
CE14 604: Structural Analysis III

Teaching scheme: 3 hours lecture and 1 hour tutorial per week

Credits: 4

Objectives:
- To enable the students to have a comprehensive idea of matrix structural analysis with emphasis on the relative advantages of the flexibility method and the stiffness method.
- To enable the students to visualize structural dynamics problems with a proper blend of structural analysis and vibration theory.

Module I (16 hours)
Matrix analysis of structures: static and kinematic indeterminacy-force and displacement method of analysis-definition of flexibility and stiffness influence coefficients-development of flexibility matrices by physical approach.
Flexibility method: flexibility matrices for truss and frame elements-load transformation matrix-development of total flexibility matrix of the structure-analysis of simple structures-plane truss and plane frame-nodal loads and element loads-lack of fit and temperature effects.

Module II (10 hours)
Stiffness method: Development of stiffness matrices by physical approach-stiffness matrices for truss and frame elements-displacement transformation matrix-analysis of simple structures-plane truss and plane frame-nodal loads and element loads-lack of fit and temperature effects.

Module III (12 hours)
Introduction to direct stiffness method-Rotation of axes in two dimensions, stiffness matrix of elements in global co-ordinates from element co-ordinates-assembly of load vector and stiffness matrix, solution of two span continuous beam-single bay single storey portal frame.

Module IV (14 hours)
Structural dynamics-introduction-degrees of freedom-single degree of freedom-linear systems-equation of motion, D’Alembert’s principle-damping-free response of damped and undamped systems-logarithmic decrement-transient response – Vibration isolation – Introduction to two degree of freedom systems (Numerical problems not expected to be solved for two DOF system)

Text books:
3. Anil. K. Chopra, Dynamics of structures, Pearson Education/ Prentice Hall India
4. Beaufait. F.W., Basic concepts of structural analysis,
5. Denhartog, Mechanical Vibration
6. Rajasekharan.S. and Sankarasubramanian G., Computational structural Mechanics, PHI

Reference books:
3. Meivovitch L., Elements of vibration analysis
4. Thimoshenko., Vibration problems in Engineering
5. Biggs, Structural Dynamics
6. Coates. R.C, and Coutie M.G., Structural Analysis
7. Madhujith Mukhopadhyay and Abdul Hamid Sheikh, Matrix and Finite Element Analysis of Structures, Ane Books India

Internal Continuous Assessment (Maximum Marks - 50)

60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8 x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE14 605: Geotechnical Engineering II

Teaching scheme Credits: 4
3 hours lecture and 1 hour tutorial per week

Objective
- To impart knowledge in behaviour and design aspects of various types of foundations

Module I (13 hours)
1. **Stresses due to applied loads**: Introduction- Boussinesque’s equations for vertical pressure due to point loads, uniformly distributed loads and strip load - assumptions and limitations - pressure bulb – Newmark’s charts and their use – Westergaard’s formula for point loads-Approximate methods for vertical stress-distribution of contact pressure beneath footings.

Module II (13 hours)
3. **Foundation - general consideration**: functions of foundations - definition of shallow and deep foundation - different types of shallow and deep foundations- selection of type of foundation - advantages and limitations of various types of foundations.

4. **Bearing capacity of shallow foundations**: Ultimate and allowable bearing capacity- net bearing pressure- Allowable soil pressure –Types of shear failure. Terzaghi’s equation for bearing capacity for continuous, circular, rectangular and square footings -- bearing capacity factors and charts - - effect of water table on bearing capacity- Skempton’s formulae, –bearing capacity based on SPT.

Module III (13 hours)

6. **Footings**: types of footings - depth of footing- foundation loading- principles of design of footings – strip/continuous, individual and combined (Rectangular, trapezoidal and strap only) footings - footings subjected to eccentric loading - conventional procedure for proportioning footings for equal settlements.

7. **Open excavation**: Open foundation excavations with unsupported slopes-supports for shallow excavations-stress distribution in sheeting and bracing of shallow excavations.

Module IV (13 hours)
8. **Raft foundations**: Types –Principles of design of raft foundation- bearing capacity equations- for raft on sand based on SPT results (Teng’s equation,-- raft on clay (Skempton’s formula) - design methods - floating foundations - conventional design procedure for rigid mat.

9. **Pile foundations**: uses of piles - classification of piles - determination of type and length of piles - determination of bearing capacity of axially loaded single vertical pile – static (Meyerhof’s formula) and dynamic (Engineering News Record formula and Hiley’s formula) - pile load tests (IS methods) - negative skin friction – pile group - group action, pile spacing and efficiency of pile groups.

10. **Introduction to well foundation**: components-forces acting

Note: Structural designs of foundations are not contemplated in this course.

Text Books
CE14 606: Computer Applications And Operations Research

Objectives:
- To enable the students to familiarize with mathematical models and numerical tools for solving and optimizing engineering problems.

A. Numerical methods in civil engineering

Module 1 (16 hours)

Introduction to numerical methods in civil engineering: importance of numerical methods in civil engineering - sources of errors in numerical methods - number representations - fixed and floating

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

Reference books
5. Teng W.C., *Foundation Design*, PHI
7. Murthy V.N.S., *Soil Mechanics & Foundations*

Internal Continuous Assessment (Maximum Marks=50)

60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

Teaching scheme

Credits: 4
3 hours lecture and 1 hour tutorial per week
point numbers - significant digits - round off errors - development of computer algorithms - pseudo code

Solution of algebraic and transcendental equations in one variable: bisection method - method of false position - Newton-Raphson method - successive approximation method - development of computer algorithms for each of the above methods

System of linear algebraic equations: solution of linear algebraic equations using Gauss elimination method and LU decomposition method - solution by iterative method - conditions of convergence-III conditioned system of equations - applications in civil engineering problems – matrix structural analysis

Module II (12 hours)

Eigen value problems: examples of formulation of structural stability and structural dynamics problems as Eigen value problems in civil engineering - principal stresses and strains - free vibration of multi degree of freedom systems - determination of Eigen values and Eigen vectors by power method and Jacobi’s method

Interpolation: Newton’s formulae - Gauss’ formulae - lagrangian interpolation - cubic spline interpolation

Module III (12 hours)

Numerical differentiation and integration: numerical differentiation using Newton’s and Gauss’ formulae - maximum and minimum values of tabulated functions - Newton Cote’s integration formulae - numerical integration using trapezoidal formula - Simpson’s formulae and Gauss quadrature - development of computer algorithms for numerical integration

Numerical solution of ordinary differential equations: Taylor’s series method - Euler’s method - Runge-Kutta method - finite difference method for the solution of boundary value problems

B. Optimisation methods in civil engineering

Module IV (12 hours)

Linear programming problems: statement of an optimisation problem - linear and nonlinear programming problems - standard form of linear programming problems - simplex algorithm - degeneracy, duality, transportation problem, assignment problem - applications of linear programming problems in civil engineering - limit design of steel portal frames

Introduction to Genetic Algorithms - basic concept - problem formulation - operations-convergence criteria.

Text Books

1. Sastry S.S., Introductory Methods of Numerical Analysis, Prentice Hall of India
2. Scarborough J.B., Numerical Mathematical Analysis, Oxford and IBH

Reference books:

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
List of Experiments

1. Specific gravity of coarse and fine grained soils
2. Grain size analysis (a) Sieve analysis
3. Atterberg limits and indices
4. Determination of field density (a) sand replacement method (b) core cutter method
5. Determination of coefficient of permeability by (a) Constant head method (b) variable head method
6. Consolidation test
7. Compaction test (a) IS light compaction test (b) IS heavy compaction test
8. California bearing ratio test
9. Direct shear test
10. Unconfined compressive strength test
11. Triaxial shear test

Internal Continuous Assessment (Maximum Marks-50)

60% - Laboratory practical and record
30% - Tests/s
10% - Regularity in the class

End Semester Examination (Maximum Marks-50)

70% - Procedure, conducting experiment, results, tabulation, and inference
20% - Viva voce
10% - Fair record
CE13 608(P): Material Testing Lab -II

Objective:
To study strength aspects of concrete & Metals

List of Experiments
1. Tension test on mild steel specimens using Universal Testing Machine (UTM) and suitable extensometer
2. Shear test on mild steel rod
3. Torsion test on metal rods
4. Torsion test on metal wires – torsion pendulum
5. Spring test
 a) Open coiled spring
 b) Close coiled springs
6. Impact test
 a) Izod test
 b) Charpy test
7. Hardness test
 a) Brinell Hardness test
 b) Rockwell Hardness test
 c) Vickers Hardness test
8. Casting of concrete cubes & cylinders with specified proportions/mix
9. Split tensile strength of concrete cylinders
10. Compression test on concrete cubes & cylinders – Determination of Modulii of elasticity
11. Flexural test on concrete beams
12. Study/demonstration on Electrical resistance strain gauges, load cell

Internal Continuous Assessment (Maximum Marks-50)
60% - Laboratory practical and record
30% - Test/s
10% - Regularity in the class

End Semester Examination (Maximum Marks-100)
70% - Procedure, conducting experiment, results, tabulation, and inference
20% - Viva voce
10% - Fair record
7th Semester

CE14 701: Structural Design III

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Objectives

- To provide knowledge in the structural Design of selected advanced structures of concrete and steel

Part A: Reinforced Concrete

Module I (16 hours)
Design of columns subjected to axial load, uni-axial and bi-axial eccentrically loaded short and slender columns using SP 16 of BIS by limit state method.
Different types of foundations-Design of isolated footing for axially loaded & eccentrically loaded columns, combined footing.

Module II (12 hours)
Design of cantilever and counter fort retaining walls
Design of R.C.C. Slab Bridge for IRC loading – Detailing
Design of rectangular and circular water tanks using IS code coefficients (IS 3370).
Design of spherical and conical domes-detailing

Module III (11 hours)
Prestressed Concrete fundamentals - Materials, principles – methods of prestressing- pre and post tensioning - losses of prestress. Analysis of stresses in pre and post tensioned beams (rectangular and I sections) at stages of transfer and service-cable profiles (principles only), concept of Type I, II and III PSC structures as per IS. Stresses in anchorage zone in post-tensioned beams (description only; no design expected)

Part B: Steel & Timber

Module IV (13 hours)
Design of plate girders-design of section for flexure, shear and deflection-connections-horizontal and vertical stiffeners-curtailment of flange plates - design of bearing stiffener, web splices. Plate girder Railway Bridges- Types, structural configurations, Assessment of loads and stresses, design principles of bridge bearings.
Design of timber beam and column.

Note:
All designs shall be done as per current IS. code specifications and practice
Special importance shall be given to detailing in designs
S.I. units shall be followed
Limit state design shall be practiced wherever possible as per codes
Use of IS 3370 (1 to 4), IRC 21(1, 2, 3, 7, 9), IS 13743, IS 800, IS 875 and SP 6 and SP16 shall be permitted in the examination hall.

Text Books:
2. Punmia .B.C., Jain A. K., Reinforced Concrete Structures, Lexmi Publications

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
4. Krishnaraju, Prestressed Concrete, Tata McGraw Hill
5. Subramanian N, Design of steel Structures, Oxford University Press
7. Jagadeesh & Jayaram: Design of Bridge structures, Printice Hall of India
8. Punmia B.C., Jain A. K., Design of Steel Structures, Lexmi Publications

Reference Books:
1. Park & Paulay, Reinforced Concrete, McGraw Hill
2. Varghese P.C., Limit State Design of Reinforced Concrete, Prentice Hall of India
6. Jain and Jaikrishna, Plain and Reinforced Concrete Vol I & II, Nemchand
8. Lin. T.Y. and Burns, Design of Prestressed Concrete Structures., John Wiley
10. Libby J., Prestressed concrete structures, CBS Publishers
11. Krishnaraju N., Structural Design and Detailing, Reinforced concrete and steel, University Press
13. Sinha, N.C., Sujit Kumar Roy, Fundamentals of Prestressed concrete, S Chand

Internal Continuous Assessment (Maximum Marks-50)

60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions
8 x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions
4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100
CE14 702: Design of Hydraulic Structures

Teaching scheme
2 hours lecture and 2 hour drawing per week

Credits: 4

Objectives:
- Students are expected to know the details of major and minor irrigation structures and their design. A student, who successfully completes the course, should be able to carry out design of various hydraulic structures in the given field conditions. Also to make the students familiarize with the relevant IS codes and to enhance the capability of reading the working drawings.

Module I (13 hours*)
Storage Head Works;
Types of dams - gravity dam - selection of site - forces acting on dams - drainage gallery - joints in dams - elementary profile - limiting height of gravity dam - high and low dam - practical profile of a high gravity dam - design methods and design by gravity analysis only - arch dam - design methods - design by cylinder theory only. spillways and their types

Module II (13 hours*)
Tank structures
Surplus works – types of surplus works- surplus weir –surplus escapes, core wall type – flush escape
Outlet works - tank sluice with tower head
Canal structures
Canal outlets-review of requirements and types-modular, semi modular, non-modular outlets- design of direct sluice
(Detailed design and drawing of surplus weir, tank sluice and direct sluice are expected)

Module III (13 hours*)
Diversion head works - Types – design of surface and subsurface weirs - design of regulator cum Road Bridge
Canal falls - design of trapezoidal notch canal fall - design of syphon well drop-
(Detailed designs and drawings of canal regulator cum road bridge, trapezoidal notch fall and siphon well drop are expected.)

Module IV (13 hours*)
Cross drainage works - necessity - types of cross drainage works - selection of suitable type of cross drainage works - types of aqueducts- design of aqueduct - syphon aqueduct (type II and III) super passage and canal syphon
(Detailed designs and drawings of aqueduct and syphon aqueduct (Type II) are expected).

* Hours are inclusive of drawing classes.

Text Books:
1. Asawa, Irrigation Engineering, Wiley Eastern Publication
2. Sathyanarayana Murthy, Water Resources Engineering, Wiley Eastern
3. S. K Garg, Irrigation Engineering and Hydraulics, Khanna Publishers

Reference Books:
1. Varshney R.S., Theory & Design of Irrig. Structures, Nem Chand
2. Punmia B.C., Irrigation & Waterpower Engg., Laxmi Publications

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
5. IS 7784 (Part I (1993), Part II Section 1 to 5 (1995)) Design of cross drainage works – Code of Practice
8. IS:6531 (1972) – Criteria for design of canal head regulator
9. IS:7114(1973) – Criteria for hydraulic design of cross regulator for canal
11. IS:12331 – General requirement of canal outlets

Internal Continuous Assessment (Maximum Marks-50)
Tests (minimum 2) – 22 Marks
Assignments (8 Drawing Sheets) – 24 Marks
Regularity in the class – 4 Marks
Note: Since drawing shall be given more importance in this subject apportioning of marks are kept different.

University Examination pattern
PART A: Questions for Short answers
Candidates have to answer four questions out of five. There should be at least one question from each module and not more than two questions from any module.
4x5 marks=20 Marks

PART B:
Candidates have to answer one question out of two. Both questions shall be from Module I.
1x15 marks=15 Marks

PART C: Questions for presenting Design and drawing
Two questions from any module other than Module I, with choice to answer one question. Both the questions shall be from two different modules.
1x65 marks= 65 Marks

Maximum Total marks: 100

CE 14 703 Environmental Engineering I

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective:
- To provide detailed understanding regarding usage of water for drinking purpose - from identification of source, planning the treatment systems, distribution of treated water with development of distribution of layout and necessity of maintenance.

Module I (10 hours)

Module II (14 hours)
Sources of water – surface water sources – suitability of the source with respect to quantity and quality – intakes of various surface water sources – design of intakes – ground water sources -
development and protection of groundwater sources – estimation of yield from various ground water sources – construction of tube wells – maintenance.
Quality of water – drinking water standards – physical, chemical and bacteriological analysis of water.

Module III (14 hours)

Module IV (14 hours)

Text Books:

Reference Books:

Internal Continuous Assessment (Maximum Marks-50)

- 60% - Tests (minimum 2)
- 30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- 10% - Regularity in the class
University Examination Pattern

PART A: Analytical/problem solving **SHORT questions**

Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving **DESCRIPTIVE questions**

Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE14 706 (P): Computer Applications Laboratory

Teaching scheme

3 hours practical per week (Minimum 39 hrs)

Credits : 2

Objective:

To familiarize and give hands-on training to students in the following areas of civil engineering application software:

1. **Surveying** - Terrain mapping, computation of areas and volumes – Estimation of earth work, GIS
2. **Structural Engineering** – Analysis and design of Plane and space frames (steel and R.C.C), spread sheet development for design of R.C.C/ steel structural elements.
3. **Water resources** – Circular Pipe Analysis / Trapezoidal Channel Analysis, analysis of pipe network for water distribution
4. **Geotechnical engineering** – Stability analysis of slopes, computation of foundation settlement and stresses on layered soils, Geotechnical design of anchored and free retaining walls, Analysis and design of pile foundations.
5. **Road/railway system** – Fixation of vertical/horizontal alignment of highways, Design of rigid and flexible pavements.
6. **Environmental engineering** - Pipe Network Analysis
8. **Project management** – PERT and CPM, project scheduling, managing and documentation, Network Analysis.

Notes:

1. Students are supposed to document each tutorial with drafting after each session.
2. At least five of the above eight areas shall be covered.
Recommended software packages: The following packages or their equivalent are recommended for the above listed exercises:

- AutoCAD, Microstation, MS-Office, Matlab, Grapher/Sigmaplot
- Autocivil, SAP, StAAD, ANSYS, NISA, GTSTRUDL
- WaterCAD, FlowMaster, EPA NET, Geo4, Inroads, ArcGIS
- MS-Project

Internal Continuous Assessment (Maximum Marks=50)

60%-Laboratory practical and record
30%- Test/s
10%- Regularity in the class

Note: Students shall be encouraged to take up a term-project on any of the above listed areas and complete it within the semester

End Semester Examination (Maximum Marks=100)

70% - Procedure, conducting experiment, results, tabulation, and inference
20% - Viva voce
10% - Fair record

CE 14 707(P): Environmental Engineering Laboratory

Teaching scheme

3 hours practical per week (Minimum 39 hrs)

Credits: 2

Objective

- To make students familiar with laboratory tests for water quality assessment.

List of Experiments

1. Determination of Solids (Total, dissolved and suspended) in water.
2. Determination of Turbidity of water and estimation of optimum coagulant dosage by jar test.
3. Determination of alkalinity of water.
4. Determination of hardness of water by EDTA titrimetric method.
5. Determination of chlorides in water.
6. Determination of iron and manganese in water
7. Determination of sulphates and sulphides in water.
8. Determination of dissolved oxygen in water.
10. Determination of pH of water (by various methods).
12. Determination of MPN (demonstration only)

Reference Books:

Internal Continuous Assessment *(Maximum Marks-50)*

- 60% - Laboratory practical and record
- 30% - Test/s
- 10% - Regularity in the class

End Semester Examination *(Maximum Marks-100)*

- 70% - Procedure, conducting experiment, results, tabulation, and inference
- 20% - Viva voce
- 10% - Fair record

CE 14 708 (P): Project

Teaching scheme

4 hour per week

Credits: 4

Objective

To develop the capacity of the students in converting the theoretical knowledge into practical systems either to perform creative works or to perform analysis and hence to suggest solutions to problems, pertaining to Civil Engineering domain.

Project work is of duration of two semesters and is expected to be completed in the eighth semester. Each student group consisting of not more than five members is expected to design and develop a complete system or make an investigative analysis of a technical problem in the relevant area. The project work can be a planning and / or design project, experimental project, computer application based project on any of the topics of civil engineering interest. HOD will frame the rules for forming batches. If required, HOD can combine project hours of many weeks together and allot a maximum of 2 weeks exclusively for project. The project batches are expected to fix their topics, complete preliminary studies like literature survey, field measurements, data collection, etc. in the seventh semester. Also they are expected to finish about 40% of their work in 7th semester.

Each project group should submit project synopsis within three weeks from start of seventh semester. Project evaluation committee consisting of guide and three or four faculty members specialised in various fields of civil engineering, shall study the feasibility of each project work before giving consent.

As far as possible, students should execute the project work using the facilities of the institute. However, external projects can be taken up in government departments/institutions, reputed construction industries, if that work solves a technical problem of the external firm. Prior sanction should be obtained from the head of department before taking up external project work and there must be an internal guide for such projects.
The assessment of all the projects should be done at the end of the seventh semester by the project evaluation committee formed as mentioned earlier. The students will present their project details and progress of their project to the committee. The complete project report is not expected at the end of the seventh semester. However, a typed interim report based on the work done should be submitted by each student batch to the assessing committee. The assessment committee and project guides will award the marks for the individual students in a project as follows:

50% of the marks is to be awarded by the guide and 50% by the evaluation committee.

Internal Continuous Assessment:
- 20% - Technical relevance of the project
- 40% - Literature survey and data collection
- 20% - Progress of the project and presentation
- 10% - Report
- 10% - Regularity in the class

ELECTIVES

CE 14 704 (A): Advanced Structural Design I

Teaching scheme

3 hours lecture and 1 hour tutorial per week

Objective:
- To equip the students to assess the loads on some important types of structures, choose the method of appropriate analysis according to the situation and perform design

Module I (13 Hours)
- Design of Deep beams & Corbels
- Design of Ribbed Slabs
- Yield line theory of slabs – Design of Square, Rectangular & Circular slabs for UDL and point load at centre

Module II (13 Hours)
- Design of flat slabs by direct design method and equivalent frame method as per IS 456-2000.
- Design of multi-bay multi-storied portal frames for gravity loads, Pattern loading - Use of SP 16 (Substitute Frame method of analysis may be followed)

Module III (13 Hours)
- Design of Light Gauge members – compression and flexural members
- Design of Self Supporting & Guyed steel Chimney (design for wind dynamics not expected)

Module IV (13 Hours)
- Basic principles of analysis of Base-excited SDOF and MDOF systems - formulation of basic equation– concepts of pseudo acceleration, velocity and displacement - Earthquake response spectra (concept only).
- Lumped mass modelling of multi-storey shear building and modes of vibration (concepts only-demonstration with example- students are not expected to solve numerical problem on evaluation of modes during examination)-modes superposition- SRSS and CQC (Introduction only)-Concept of design spectrum for earthquake- use of IS 1893.
Design of Multistoried framed structures for wind and Earthquake Loads- Equivalent static load method of IS 1893.
Ductility detailing for earthquake forces- IS 13920

Note
1. All designs shall be done as per current I.S. specifications.
2. Special importance shall be given to detailing in designs.
3. Limit state design shall be practiced wherever possible
4. Use of I.S. codes (IS 456, IS 801, IS 811, IS 1893) and SP16 (Design Aids) shall be permitted in the examination hall.

Text books
1. Varghese P.C., Advanced Reinforced Concrete Design , PHI
2. Winter and Nelson, Design of Concrete Structures, Tata McGraw Hill
3. Arya and Ajmani, Design of Steel Structures, Nemchand & Bros.
4. Anil K Chopra, Dynamics of structures-theory and applications to earthquake engineering, Pearson Education
5. R W Clough and J Penzien, Dynamics of structures, McGraw Hill

Reference books
3. Jain and Jaikrishna, Plain & Reinforced Concrete Vol.I & 11, Nem Chand
4. Ferguson, Reinforced Concrete, Wiley Eastern
5. Ramchandra, Design of Steel Structures Vol. II, Standard Book House
6. Park and Paulay, Reinforced Concrete Structures
7. Pankaj Agarwal and Manish Shrikandhe, Earthquake Resistant Design of Structures, PHI

Internal Continuous Assessment (Maximum Marks-50)

60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100
CE 14 704 (B): Advanced Geotechnical Engineering I

Teaching scheme Credits: 4
3 hours lecture and 1 hour tutorial per week

Module I (12 Hours)
Clay mineralogy: Introduction-Gravitational and surface forces-Electrical charges on clay minerals-bonds-basic structural units of clay-isomorphs substitution-base exchange capacity-common clay minerals (Kaolinite, Montmorillonite and Illite only)-Diffuse double layer-thixotrophy-activity of soils-capillary water-soil suction-capillary potential-capillary siphoning.

Module II (12 Hours)
Flow of water through porous media: Introduction- Permeability of soil-aquifers-seepage of water-upward flow-effective stresses under steady seepage conditions-quick sand condition-failure of hydraulic structures by piping-Two dimensional flow-Laplace’s equation-flow net and it’s use-construction of flownet for sheet pile wall and earth dams-phreatic lines-flow net for anisotropic soil.

Module III (14 Hours)
Shear strength of soil-Introduction-Mohr-Coulomb failure criteria-modified failure envelope-total stress and effective stress analysis-stress vs. strain curves for soil-volumetric strain vs. axial strain-pore pressure vs. axial strain-critical void ratio-modified failure envelope-pore pressure parameters-choice of shear test and test conditions-liquefaction of sands-behaviour of over consolidated and normally consolidated soil during shearing-introduction to shear strength of partially saturated soil.

Module IV (14 Hours)
Earth and earth retaining structures- Introduction-Earth pressure theories-Types of retaining walls-Design of retaining walls-Gravity and cantilever retaining walls-only-sheets pile walls-Types-Pressure distribution diagrams for cantilever and anchored sheet pile walls in cohesion less and cohesive soils.

Reference books
2. Punmia B. C., Soil Mechanics & Foundations, Laxmi Publications
3. Venkatramiah, Geotechnical Engineering, New Age International Publishers
6. Terzaghi & Peck, Soil Mechanics in Engineering Practice, Asia Publishing
7. Murthy V.N.S., Soil Mechanics & Foundations
8. Coduto, Geotechnical Engineering Principles and Practices, Pearson Education

Internal Continuous Assessment (Maximum Marks-50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class
CE 14 704 (C) Highway Pavement Design

Teaching scheme
3 hours lecture and 1 hour tutorial per week

To equip the students to carry out design and evaluation of flexible and rigid pavements in varied field conditions.

Note: IRC 37 2001 and 58-2002 and design charts are permitted for University Examinations

Module I (12 hours)
Introduction: types and component parts of pavements - factors affecting design and performance of pavements - comparison between highway and airport pavements - functions and significance of sub grade properties – various methods of assessment of sub grade soil strength for pavement design - cause and effects of variations in moisture content and temperature - depth of frost penetration - design of bituminous mixes by Marshall method

Module II (14 hours)
Stress analyses and methods of flexible pavement design: stresses and deflections in homogeneous masses - burmister 2 layer and 3 layer theories - wheel load stresses - ESWL of multiple wheels - repeated loads and EWL factors - empirical, semi - empirical and theoretical approaches for flexible pavement design - group index, CBR, triaxial, mcLeod and burmister layered system methods

Module III (14 hours)
Stresses analysis and methods of rigid pavement design: types of stresses and causes - factors influencing stresses, general conditions in rigid pavement analysis - ESWL- wheel load stresses - warping stresses – friction stresses - combined stresses - functions of various types of joints in cement concrete pavements - design and detailing of slab thickness ; longitudinal, contraction and expansion joints by IRC recommendations

Module IV (12 hours)
Pavement evaluation: structural and functional requirements of flexible and rigid pavements - pavement distress - evaluation of pavement structural condition by Benkelman beam rebound deflection and plate load tests - introduction to design of pavement overlays
Problems of highway rehabilitation – pavement rehabilitation programming.
Text Book:

References:
5. David Croney, ‘The Design and Performance of Road pavements’, HMSO publications

Internal Continuous Assessment (Maximum Marks - 50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE14 704 (D): Experimental Stress Analysis

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective
To make students aware of various measurement techniques and experimental planning and procedures adopted in laboratory

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
Module I (14 hours)
Strain gauges - definition of gauge length - sensitivity and range - characteristics of an ideal strain gauge - different types of mechanical strain gauges, optical strain gauge - acoustic strain gauge - pneumatic strain gauge - merits and demerits - electrical strain gauges - inductance, capacitance and piezo electric gauges - bonded and unbonded resistance gauges and their application in stress analysis - fixing techniques and measurement of strains - rosettes - determination of principal stress - construction of stress, strain circles - analytical solution

Module II (12 hours)
Photo elasticity - basics of optics, stress optic law - plane and circularly polarized light and their use in photo elasticity - polariscopes - diffusion type - lens type polariscopes - isoclinics and isochromatics

Module III (14 hours)
Model materials - calibration methods for finding material fringe values - model fringe values - examples of beam flexure and diametrically loaded circular plates.
Computer based data acquisition systems.

Module IV (12 hours)
Model analysis - direct and indirect models - laws of structural similitude - choice of scales - limitation of model studies - buckingham pi-theorem - dimensional analysis - model materials - Begg’s deformater and its use - simple design of direct and indirect models

Text Books
1. Dally, J. W. and Railey W.F., Experimental Stress Analysis, McGraw Hill.
2. Srinath L.S., Experimental Stress Analysis, Tata McGraw Hill
3. Roy, T.K., Experimental Analysis of stress and strain

Reference Books
1. Dove and Adams, Experimental Stress Analysis and Motion measurement, Prentice Hall

Internal Continuous Assessment (Maximum Marks-50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class
Teaching scheme
3 hours lecture and 1 hour tutorial per week

Objectives
To understand in detail the behaviour of fresh and hardened concrete.
To aware recent developments in concrete technology
To understand factors affecting the strength, workability and durability of concrete

Module I (13 hrs)
Cements: Review of cements including blended cements, chemical composition; tests on chemical and physical properties; process of hydration.
Aggregates: Review of types; production of artificial aggregates; sampling and testing; effects on properties of concrete; special aggregates.
Chemical Admixtures: Review of types and classification; actions and interactions; usage; effects on properties of concrete; methods of test; applications.
Mineral Admixtures: Flyash, ground granulated blast furnace slag, metakaolin, rice-husk ash and silica fume; chemical composition; physical characteristics; effects on properties of concrete; methods of test; applications advantages and disadvantages

Module II (13 hrs)
Special concrete: Lightweight concrete; autoclaved aerated concrete; no-fines concrete; lightweight aggregate concrete and foamed concrete.
High strength concrete; refractory concrete; high density and radiation-shielding concrete;
Polymer concrete; fibre reinforced concrete; Ferro-cement; recycled aggregate concrete; Prepacked concrete.
High-performance concrete, Self compacting concrete, Pumpable concrete, Ready mixed concrete

Module III (13 hrs)
Non-destructive testing of concrete - Surface Hardness, Ultrasonic, Penetration resistance, Pull-out, pull-off and break-off methods, Chemical testing for chloride and carbonation- core cutting - measuring reinforcement cover.
Mix Design: Factors considered in the design of mix design of low and medium strength mixes. BIS Method, Introduction to ACI, FM, Road Note No.4 Methods, Mix design of High strength, High density concrete, Light weight concrete and Ready mix concrete

Module IV (13 hrs)
Durability of concrete - Strength and durability relationship, volume change in concrete, permeability, interaction between, permeability, volume change and cracking

Text books:
2. R. Santhakumar ‘Concrete Technology’, Oxford Universities Press.

References:
7. Bungey, Millard, Grantham – The Testing of Concrete in Structures - Taylor and Francis
8. IRC Highway Research Board – State of the Art: Non-Destructive Testing Techniques of Concrete

Internal Continuous Assessment (Maximum Marks-50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE14 705 (A): Structural Dynamics and Seismic Design

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective:
To equip students with the basic knowledge on design of earthquake resistant structures

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
Module I (10 hours)

Module II (13 hours)
Solution of the equation of motion- undamped free vibration- damped free vibration- critical damping- under damped system- over damped system- negative damping-concept of Coulomb damping.
Response to periodic loading - Fourier series expression of the loading- Response to the Fourier series loading - Exponential form of Fourier series solutions – concept of four way logarithmic graph paper

Module III (16 hours)
Base-excited SDOF system - formulation of basic equation– concepts of pseudo acceleration, velocity and displacement - Earthquake response spectra (concept only).
Lumped mass modelling of multi-storey shear building and modes of vibration (concepts only- demonstration with example- students are not expected to solve during examination)
Performance of building and structures under earthquakes- Main Causes of Damage- Intensity of earthquake forces, lack of strength and integrity of buildings, quasi resonance – lack of ductility, lack of detailing.
Earth quake effects- On buildings, structures, power plants, switch yards, equipments or other life line structures, soil liquefaction- Assessment of damage
Philosophy and Principles of earthquake.-resistant design- Strength and stiffness- ductility-based design and detailing, concepts of seismic isolation and seismic active control, Building forms and architectural design concepts- Horizontal and vertical eccentricities due to mass and stiffness distribution (Numerical exercises not expected) IS specifications.

Module IV (13 hours)
Equivalent Static Method- Seismic zones and coefficients – response reduction factors -Estimations of fundamental time period, base shear and its distributions using IS: 1893 for multistory buildings (regular shape only).
Use of codes like IS: 4326, IS: 13828, IS: 13827, IS13920, SP:22 with reference to masonry, RCC and steel building Detailing of reinforcement and joints.
Restoration and retrofitting - Methodologies for restoration and retrofitting – For walls, roofs, slabs, columns and foundation of building in stones, brick or reinforced concrete structures

Text books
1. Anil K Chopra, Dynamics of structures-theory and applications to earthquake engineering, Pearson Education
2. R W Clough and J Penzien, Dynamics of structures, McGraw Hill

References
1. Pillai & Menon, Reinforced concrete design, Tata McGrawHill
2. Park & Paulay, Reinforced concrete, McGrawHill
3. Madhujit Mukhopadhyay, Structural Dynamics – Vibrations and System, Ane Books India
IS Codes:
4. IS:1893 - (Part I), Criteria for Earthquake Resistant structures-General Provisions and Buildings
5. IS:13935 – Repair and Seismic strengthening of buildings
6. IS:4326 - Earthquake Resistant Design and Constructions of buildings

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
7. IS:13827 – Improving Earthquake Resistance of Earthen buildings
8. IS:13828 - Improving Earthquake Resistance of Low strength Masonry buildings
9. IS:13920 – Ductile detailing of RC Structures subject to Seismic forces.
10. Patrick Paultr, Dynamics of Structures, Wiley India Publishers

<table>
<thead>
<tr>
<th>Internal Continuous Assessment</th>
<th>(Maximum Marks-50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60% - Tests (minimum 2)</td>
<td></td>
</tr>
<tr>
<td>30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.</td>
<td></td>
</tr>
<tr>
<td>10% - Regularity in the class</td>
<td></td>
</tr>
</tbody>
</table>

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE 14 705 (B): Soil Exploration, Testing and Evaluation

Teaching scheme Credits: 4
3 hours lecture and 1 hour tutorial per week

Objective
- To equip students with techniques of exploration, testing and evaluation for soil parameters required for foundation choice and design

Module I (13 hours)
Soil Exploration: objectives-methods-depth, spacing, size and number of boreholes-different methods of boring-bore logs-sample requirements-sampling methods and equipments-handling, preservation and transporting of samples-rock core recovery-rock quality designation-geophysical and seismic methods-preparation of soil investigation reports(Student are expected to know how to choose type of exploration for different type of works, how to carry out the exploration and must be able to prepare soil investigation reports)

Module II (13 hours)
Laboratory Testing of Soil: water content, specific gravity, grain size analysis, Atterberg’s limits and indices, Permeability: constant head and variable heads, Compaction: light and heavy, Consolidation: time-settlement, e-log(p) curve- pre-consolidation pressure-Shear Test: direct shear, triaxial, unconfined compression, vane shear –pore pressure measurement (Students are expected to know the test procedures, computations o properties from observations and correlations and interpretation of results. Theoretical treatment – derivation etc is not required)

Module III (13 hours)

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
Field Testing of Soil: Plate load test, standard penetration test, static cone penetration test, Dynamic cone penetration test, Pressure meter test, Field Vane shear test, Field permeability test
(Students are expected to know the test procedures, computations of properties from observations and correlations and interpretation of results. Theoretical treatment – derivation etc is not required)

Module IV (13 hours)
Laboratory and Field Testing of Rocks: Laboratory tests: Tension, shear and flexure tests – Elastic Modulus by Brazilian and bending tests. Insitu tests: Test for deformability, shear tests, strength tests and test for internal stresses.

Text Books
1. Alarm Sing, Soil Engineering- Theory and Practice, Asia Pub

Reference Books
4. Murthy V.N.S., Soil Mechanics anfd Foundation Engineering, DhanpathRai
5. Coduto, Geotechnical Engineering Principles and Practices, Pearson Education
7. Tomlinson M J., Foundation Design and Construction, Pitman

Internal Continuous Assessment (Maximum Marks-50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE14 705 (C): Ecology & Environmental Chemistry

Teaching scheme Credits: 4
3 hours lecture and 1 hour tutorial per week

Module 1 (13 hours)

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014

Module II (13 hours)
Ecosystem - definition - principal steps and components of an ecosystem - tropic levels - food chains and food webs - energy flow in ecosystem - ecological pyramids - productivity of the ecosystem - homeostasis of the ecosystem and cybernetics - significance of ecosystem studies in developing countries - major ecosystems - definition and kinds of biogeochemical cycles

Module III (13 hours)
Basic concepts from general chemistry - compounds - Avogadro’s number - valancy, oxidation static - bonding - oxidation reactions - gas laws - solutions equilibrium and Lechatelier’s principle - variation of equilibrium relationship - ways of shifting chemical equilibrium - basic concepts from physical chemistry - heat & work - energy - enthalpy - entropy - free energy - temperature dependence of equilibrium constant - vapor pressure of liquid - surface tension - binary mixture - osmosis - dialysis - principles of solvent extraction - electrochemistry - chemical kinetics - catalysis - absorption

Module IV (13 hours)
Basic concepts from organic chemistry - isomerism - aliphatic compounds - hydrocarbons - alcohol - aldehydes - ketons - ester - ethers - alkyl halides - cyclic aliphatic compounds - mercaptans thioalcohols - aromatic compounds - hydrocarbons, phenols, alcohols, aldehydes, ketones, acids - hetero cyclic compounds basic concepts from colloidal chemistry - methods of formation - colloidal dispersion in liquid - colloidal dispersion in air - basic concepts from nuclear chemistry - nuclear theory - stable and radio active nuclides - atomic transmutation and artificial radio activity - nuclear reaction - nuclear fission - effects

Reference books
2. Odum E.P., Ecology & Our Endangered Life Support Systems
3. Kudesia V.P., Environmental Chemistry

Internal Continuous Assessment (Maximum Marks-50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class
University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE 14705 (D) Ground Water Hydrology

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective:
• To make the students aware of the importance of groundwater resources and to impart strategic background information for its effective and wise utilisation

Module I (14 hours)
Occurrence of ground water: origin - rock properties affecting ground water vertical distribution - geologic formations as aquifers - types of aquifers - aquifer parameters - ground water basins - springs - Laplace equation - potential flow lines - flow net - flownet for anisotropic soils - seepage under a dam - groundwater contours - determination of flow direction - steady unidirectional flows in aquifers - confined and unconfined aquifer with percolation - steady radial flow towards a well - well in uniform flow - steady flow with uniform discharge - partially penetrating wells - steady flow in leaky aquifer.

Module II (12 hours)
Unsteady flow-general equation - Cartesian and polar coordinate - unsteady radial flow in to a well - confined, unconfined and leaky aquifiers - multiple well system - pumping tests - non equilibrium equation for pumping tests - Thies’ method - Jacob method - Chow’s method - characteristics well losses - step draw down test - well near aquifer boundaries - determination of boundaries from pumping test - Image wells - for various boundary conditions - Cavity well and open well - yield tests - pumping and recuperation test.

Module III (14 hours)
Tube wells: design - screened wells - gravel packed wells - well loss - selection of screen size - yield of a well - test holes - well logs - methods of construction - dug wells - shallow tube wells - deep wells - gravity wells - drilling in rocks - screen installation - well completion - well development - testing wells for yield - collector - or radial wells - infiltration galleries - well point system - failure of tube wells

Module IV (12 hours)
Quality of ground water: ground water samples - measurement of water quality - chemical, physical and bacterial analysis - quality for domestic use - quality for agricultural use - pumps - shallow well pumps - ground water investigation - geographical investigation - electrical resistivity method - seismic refraction method - gravity and magnetic method - test drilling - resistivity logging - potential logging - artificial recharge - recharge by water spreading - sewage recharge - recharge through pits, shafts and wells - rain water harvesting

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
Text Book
Raghunath H. M., Ground Water Hydrology, Wiley

Reference books:
1. Todd D.K., Ground Water Hydrology, John Wiley
2. Garg S.P., Ground Water & Tube wells, Oxford & IBH

Internal Continuous Assessment (Maximum Marks-50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern
PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE 14 705 (E) Finite Element Methods (G)

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Objective:
To make the back ground, basic concepts and basic formulation of finite element method clear to the students

Module I (14 hours)

Module II (12 hours)

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
formulations derived from a functional - interpolation - shape functions for \(C^0\) and \(C^1\) elements - Lagrangian interpolation functions for two and three dimensional elements

Module III (12 hours)

Displacement based elements for structural mechanics: formulas for element stiffness matrix and load vector - overview of element stiffness matrices - consistent element nodal vector - equilibrium and compatibility in the solution - convergence requirements - patch test - stress calculation - other formulation methods

Straight sided triangles and tetrahedral: natural coordinates for lines - triangles and tetrahedral - interpolation fields for plane triangles - linear and quadratic triangle - quadratic tetrahedron

Module IV (14 hours)

The isoparametric formulation: introduction - an isoparametric bar element - plane bilinear element - summary of gauss quadrature - quadratic plane elements - direct construction of shape functions for transition elements - triangular isoparametric elements - consistent element nodal loads - validity of isoparametric elements - appropriate order of quadrature - element and mesh instabilities - remarks on stress computation

Coordinate transformation: transformation of vectors - transformation of stress, strain and material properties - transformation of stiffness matrices - transformation of flexibility to stiffness - inclined support - joining dissimilar elements to one another - rigid links - rigid elements

Text books:
1. Bathe K.J., Finite Element Procedures in Engineering Analysis, Prentice Hall of India
2. Cook R.D., Malkus D.S. & Plesha M.F., Concepts & Applications of Finite Element Analysis, John Wiley

Reference books:
1. Desai C.S., Elementary Finite Element Method, Prentice Hall of India

Internal Continuous Assessment (Maximum Marks-50)

60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions
Candidates have to answer EIGHT questions out of TEN.
There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.
8x 5 marks=40 marks

PART B: Analytical/Problem solving DESCRIPTIVE questions
Two questions from each module with choice to answer one question.
4 x 15 marks=60 marks

Maximum Total Marks: 100
8th Semester

CE 14 801: Environmental Engineering II

Teaching scheme Credits: 4
3 hours lecture and 1 hour tutorial per week

To expose students to the area of waste treatment – with emphasis on domestic liquid wastes – its characterisation, collection, treatment and disposal at individual household level to community level - rural and urban. To impart the basic concepts of solid waste management and air pollution control.

Module I (14 Hours)
Systems of sewerage – separate, combines and partially combined systems, quantity of storm Sewage, source of sewage, relation to water consumption, ground water infiltration, fluctuations of sewage flow, quantity of storm sewage, factors affecting storm water sewage, determination of storm water flow, time of concentration, sewers and sewer appurtenances, materials used in the construction of sewers, shape of sewers, hydraulics of sewers, design of sewers, manholes, inlets, catch basins, grease traps, regulators, leaping weirs, side weirs, siphon spillway, inverted siphons, sewage pumps, pumping stations, ejectors, sewer junctions, outlets, maintenance of sewers, cleaning of sewers, ventilation of sewers.

Module II (12 Hours)

Module III (12 Hours)
Sewage disposal, dilution disposal into stream – pollution assimilation capacity of streams, disposal by irrigation – surface and subsurface irrigation. Sludge treatment and disposal- quality of sludge, characteristics of sludge, sludge elutriation, sludge conditioning, vacuum filtration, sludge digestion, disposal of sludge. House drainage-system and practice of plumbing, plumbing fixtures – closets, urinals, wash basins, sinks, baths and cisterns. Principles of house drainage – inspection chambers, ventilation, testing of drains, connection of house drains and street sewer. Rural sanitation – conservancy and water carriage systems, sanitary latrines, septic tanks – (Design as per I.S. specification)

Module IV (14 Hours)

Text Books
2. Duggal K N, Elements of Environmental Engineering, S Chand & Co Ltd.

Reference Books
1. Elhers and Steel, Municipal and Rural Sanitation, McGraw Hill.

Internal Continuous Assessment *(Maximum Marks-50)*

- 60% - Tests (minimum 2)
- 30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- 10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks

Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks

Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE 14 802: Quantity Survey and Valuation

Teaching scheme Credits: 4

3 hours lecture and 1 hour tutorial per week

Objectives

After studying the subject, the student should be able

1. To set out any civil engineering work which is the primary duty that is to be performed by a civil engineer in the construction field
2. To prepare detailed exact as well as approximate estimates to meet a number of requirements and also to have a clear picture of the project expenditure.
3. To have a thorough idea regarding the quality and quantity of materials, quantity and classes of skilled and unskilled labours and tools and plants required for the project.
4. To calculate the exact quantities of items of work done for affecting payment especially when direct measurements are difficult and also to determine the quantities of different materials required for various items of work.
5. To draw up specifications for the different items of civil engineering project and also to prepare the schedule of programming of the project.
6. To prepare valuation report of real and landed property

To mould themselves as entry level graduate engineers competent to manage any civil engineering project confidently either alone or jointly.

Module I (14 Hours)

Basic terms – Administrative sanction, expenditure sanction, technical sanction, contingencies, work charged establishment, provisional sum, lump sum items, centage charges etc. Esimate-Types of estimate - Revised estimate, supplementary estimate, maintenance estimate, detailed estimate, approximate estimate - plinth area method, cubic rate method, unit rate method, bay method, approximate quantity from bill method, comparison method, cost from materials and labour etc. preparation of detailed estimate for buildings - centre line method and long wall - short wall method .

Module II (12 Hours)

Methods of measurements of different items of work - Preparation detailed estimate for sanitary and water supply works –septic tank and pit, water tank, pipe lines and fixtures. Roads, culverts, bridges and retaining walls, Irrigation structures. Steel/woden structures –roofs, doors and windows. R C C Structures - Preparation of bar bending schedule. Detailed specifications for common building materials and items of work as per IS specifications.
Module III (12 Hours)
Preparation of conveyance statement - Calculation of quantities of materials for various items of work-rubble work, brick work, PCC, RCC, plastering, pointing etc. Introduction to data book and schedule of rate. Analysis of rate for various items of civil engineering works-rubble work, brick work, PCC, RCC beams and slabs, plastering, pointing, doors, windows etc. Preparation of abstract of estimate of civil engineering works.

Module IV (14 Hours)

Text books
1. M. Chakraborthi, Estimating costing & Specification in Civil Engineering
2. B. M. Dutta, Estimating and costing in civil engineering
3. S. C. Rangawala, Valuation of real properties

References
1. I.S. 1200-1968 Methods of measurements of buildings and Civil Engineering works
2. Latest schedule of rates of P.W.D
3. Latest Data book of P.W.D

Internal Continuous Assessment (Maximum Marks-50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PWD Data book and schedule of rate permitted in the examination hall

PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.
Maximum Total Mark 100 mark

CE14 803: Construction Engineering and Management

Teaching scheme Credits: 4
3 hours lecture and 1 hour tutorial per week

Objective:
To make the students familiar with the various facets of construction and its planning like project scheduling, resource and material management, construction procedures and professional ethics

Module I (14 hours)
Crashing and time-cost trade off - resource smoothing - resources levelling - construction, equipment, material and labour schedules. Preparation of job layout.

Codification of the planning system: Codification approach - Work package and activities identification code - Resource codes - Cost and Finance accounting codes - Technical document codes.

Module II (12 hours)

Construction methods and equipment: Factors for selection of equipment - equipment for excavation and transportation of earth - hauling equipment - piles and pile driving equipment - cranes.

Construction disputes and settlement: Types of disputes - Modes of settlement of disputes - Arbitration - Arbitrator - Advantages and disadvantages of arbitration - Arbitration Award.

Module III (13 hours)

Construction procedures: Different methods of construction - types of contract - tenders - prequalification procedure - earnest money deposit - security deposit - contract document - general and important conditions of contract - measurement and measurement book. Inspection and quality control - need, principles and stages.

Construction cost and budget: Construction cost - Classification of construction cost - Unit rate costing of resources - Budget - Types of budget - Project Master budget.

Module IV (13 hours)

Concept of materials management: Inventory - inventory control - Economic order quantity - Safety stock - ABC analysis.

Safety in construction: Safety measures in different stages of construction - implementation of safety programme.

Concept of ethics: Professional ethics - ethical problems - provisions of a professional code - Role of professional bodies.

Project management information system: - PMIS Concept - Information system computerization - Acquiring a system - Problems in information system management - Benefits of computerized information system.

Text books

3. S.Seetharaman, Construction engineering and management, Umesh publications.

Reference Books

1. Shrivastava, Construction Planning and Management, Galgotia Publications
2. Gahlot and Dhir, Construction Planning and Management, New Age International
3. F. Harris, Modern Construction and Ground Engineering Equipment and Methods, Prentice Hall.
4. K.K. Chitkara, Construction project management, Tata McGraw Hill
5. P.P. Dharwardkar, Management in Construction Industry, Oxford and IBH
6. Charles D Fledderman, Engineering Ethics, Prentice Hall
7. BIS, National Building Code
9. V.N.Vazirani and S.P.Chandola, Heavy Construction

Internal Continuous Assessment (Maximum Marks-50)

60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class
University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE 14 806 (P): Seminar

Conducting schedule
3 hours presentations per week

Objective
To measure as well as flourish the ability of the student to study a topic, in Civil Engineering, of current relevance, from technical literature and present a seminar on that topic. Individual students should be asked to choose a topic in any field of civil engineering, preferably from outside the B.Tech syllabus and give a seminar on that topic for about thirty minutes. It enables the students to gain knowledge in any of the technically relevant current topics and acquire the confidence in presenting the topic. The student will undertake a detailed study on the chosen topic under the supervision of a faculty member, by referring papers published in reputed journals and conferences. Each student has to submit a seminar report (in two copies), based on these papers; the report must not be reproduction of any original paper. A committee consisting of three/four faculty members (preferably specialized in various sub-fields of Civil Engineering) will evaluate the seminar. One of the two copies submitted by the student should be returned to him/her after duly certifying it by the staff in charge of the seminar and Head of the department and the other copy shall be kept in the departmental library.

Internal Continuous Assessment
20% - Relevance of the topic and literature survey
50% - Presentation and discussion
20% - Report
10% - Regularity in the class and Participation in the seminar

CE 14 807 (P): Project

Teaching scheme
7 hour per week

The project work started in the seventh semester will continue in this semester. The students should complete the project work in this semester and present it to the assessing committee (as constituted in the seventh semester). The performance of the students in the project work shall be assessed on a continuous basis by the project evaluation committee through progress seminars and demonstrations conducted during the semester. Each project group should maintain a log book of activities of the project. It should have entries related to the work done, problems faced, solution evolved etc. There shall be at least an Interim Evaluation and a final evaluation of the project in the 8th semester. Each project group has to submit an interim report in the prescribed format for the interim evaluation. Each student is expected to prepare a report in the prescribed format, for final evaluations based on the project work. Members of the project group will present the relevance, design, implementation, and results of the project to the project evaluation committee. Each group will submit the copies of the completed project report signed by the guide to the department. The Head of the department will certify the copies and return them to the students. One copy will be kept in the departmental library and one by the respective guide. The assessment committee and project guides will award the marks for the individual students in a project as follows: 50% of the marks is to be awarded by the guide and 50% by the evaluation committee.
Internal Continuous Assessment

40% - Data collection, Planning/ Design and detailing/Simulation and analysis
30% - Presentation & demonstration of results
20% - Report
10% - Regularity in the class

CE 13 808 (P): Viva Voce

Credits: 4

Objective

To examine the knowledge acquired by the student during the B.Tech. course, through an oral examination

The students shall prepare for the oral examination based on the theory and laboratory subjects studied in the B.Tech. course, seminar, and project. There is only university examination for viva voce. The university will appoint two external examiners and an internal examiner for conducting the viva voce examination. These examiners shall be senior faculty members having minimum five years of teaching experience at engineering degree level. For final viva-voce, candidates should produce certified reports of seminar and project (two interim reports and main report). If he/she has undergone industrial training/industrial visit/educational tour or presented a paper in any conference, the certified report/technical paper shall also be brought for the viva-voce. The examiners shall ask questions from subjects studied for the B.Tech course, project, seminar and reports of industrial visits/trainings conducted by the student. Allotment of marks for viva-voce shall be as given below.

Pass minimum is 50%

Note: A student failed in viva voce but had passed in all other subjects shall be given with an additional chance for appearing the viva voce examination with in three months from the date of examination.

Assessment in Viva-voce (Maximum Marks – 100)

40% - Subjects
30% - Project
20% - Seminar
10% - Industrial training/industrial visit/educational tour or Paper presented at National-level

ELECTIVES

CE 14 -804(A): Advanced Structural Design II

Credits: 4

Teaching scheme

3 hours lecture and 1 hour tutorial per week

3 hours lecture and 1 hour tutorial per week

Objective:

To familiarize the students with analysis & design aspects of some advanced structures like shell roofs, tall buildings and pre-stressed concrete structures

Module I (13 Hours)

Shell Roof – Introduction-Classification of shells, types of stresses, Analysis of cylindrical shells, Design of simply supported circular cylindrical shells using membrane theory, Beam theory and ASCE Manual No.31

Module II (13 Hours)

Folded Plates – Introduction- Analysis using Iteration Method and using equation of three shears. Introduction to analysis using Simpson’s Method (principles and steps only) - Design using Beam Method
Module III (13 Hours)
Tall Buildings – Introduction, Structural Systems, Principles of analysis, design and detailing of different types of Shear wall. Moment redistribution in beams.

Module IV (13 Hours)
Principles of design of Pre-stressed Concrete Beams – Preliminary design- flexure and shear- Introduction to limit state method as per IS - Principles of design of anchorage zones (Theory only)
Principles of design of Pre-stressed Concrete Tension members – Preliminary design.

Note:
1. All designs shall be done as per current I.S. specifications.
2. Special importance shall be given to detailing in designs.
3. Limit state design shall be practiced wherever possible
5. Use of I.S. codes and SP16 shall be permitted in the examination hall.

Text Books:
1. Varghese P.C., Advanced Reinforced Concrete Design, PHI
3. Jain and Jaikrishna, Plain & Reinforced Concrete Vol. 11, Nem Chand
4. Lin.T.Y.andBurns ,Design of Prestressed Concrete Structures, John Wiley
5. Libby, Pre stressed Concrete, CBS Publishers
6. N. Krishnaraju, Pre stressed Concrete, Oxford & IBH
1. Roy & Sinha, Pre stressed Concrete
2. B.S. Taranath, Structural Analysis and design of Tall Buildings, McGraw Hill

Reference Books:
1. Park & Paulay, Reinforced Concrete Structures
2. Krishnaraju N, Structural Design and Drawing, University Press
3. IS 2210-1962, Criteria for The Design of R.C.C. Shell Roofs & Folded Plates
4. IS 1343- Code of practice for design of pre-stressed concrete structures
5. ASCE, Manual for Design of Cylindrical Concrete Shell Roofs No. 31
6. Ramaswamy G.S., Design & Construction of Concrete Shell Roofs
8. Special Publication, Shear Wall Frame Interaction - A Design Aid With Commentary By McLeod I.A., Portland Cement Association

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100
CE 14 – 804 (B): Advanced Geotechnical Engineering II

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Module I (12 hours)
Well foundations: Introduction- Applications-Different shapes of wells-grip length-scour depth-design depth-forces acting on well foundation-Terzaghi’s method of analysis (only general case)-bearing capacity based on N value-(only IS recommendation)-design of individual components of well-sinking of wells-measures for rectification of tilts and shifts. Features of Box(floating) caisson and pneumatic caisson.

Module II (14 hours)
Foundation on expansive soils: Introduction to expansive soil- Identification of expansive soils-shrinkage and expansion of clay- -classification of expansive soil-direct measurement of swell and swell pressure-Free swell-swelling potential-Tests for swell pressure-(only IS code method)-prediction of swell pressure from index properties-classification of damages in buildings-causes and types of damages in buildings on expansive soils- Damages and cracks in buildings on expansive soils-preventive measures for expansive soils-modification of expansive soils-principles of design of foundations in expansive soil deposits-environmental solutions such as soil replacement techniques and lime columns-structural solutions such as provision of rigid foundation, under reamed piles, T Beams as strip footing for walls (only basic aspects are to be discussed)

Module III(14 hours)
Soil dynamics and Machine foundations: Introduction- Soil behavior under dynamic loads and application-Difference between static and dynamic load behavior-soil properties relevant for dynamic loading- free vibrations and forced vibrations- Types of machines-Types of machine foundations - vibration analysis of a machine foundation-general design criteria for machine foundations- Design criteria for foundation for reciprocating machines-(only IS specifications)-design procedure for block foundation for a reciprocating machine-reinforcement and construction details-vibration isolation and control

Module IV (12 hours)
Introduction to software packages in Geotechnical Engineering- for bearing capacity analysis and stability of slopes (application of a simple case on any one package)

Reference books
2. P.C.Varghese, Foundation Engineering,Prentice-Hall of India Private Ltd, New Delhi
7. Venkatramiah, Geotechnical Engineering, New Age International Publishers
8. Teng W.C., Foundation Design, PHI
10. Coduto, Geotechnical Engineering Principles and Practices, Pearson Education

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014
CE14 804(C): Surface Hydrology and Water Power

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective:
To make the students aware of the importance of surface water resources and strategic back ground information for its effective and wise utilization

Module I (13 Hours)
Introduction: Hydrologic cycle- application of hydrology in engineering – water balance equation – water resources of India – review of rainfall measurement and analysis.
Rain water harvesting – water scarcity in Kerala – reasons – manmade alterations in hydrologic cycle – methods of water conservation

Module II (13 Hours)
Module III (13 Hours)

Module IV (13 Hours)

Text books:
Subramanian K., Engineering Hydrology, Tata McGraw Hill
Regunath H.M., Hydrology, Prentice Hall
Duggel K.N., and J.P. Soni, Elements of water resources engineering, New Age International Publishers.

References:
McCuen R.H, Hydrologic analysis and design, Prentice Hall
Singh V.P., Elementary Hydrology, Prentice Hall of India
Rao K. L., Water resources of India,

Internal Continuous Assessment(Maximum Marks-50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100
CE 14 804 (D) Urban Transportation Planning

Objective:
To equip the students with the basic principles of transportation planning.

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Module I (13 hours)
Urban transportation planning process and concepts: Role of transportation - transportation problems – urban travel characteristics - evolution of transportation planning process - concept of travel demand - demand function - independent variables - travel attributes - assumptions in demand estimation - sequential, recursive and simultaneous process

Module II (13 hours)
Trip generation analysis: assumptions in trip distribution analysis - different types of distribution models - definition of study area - zoning - types and sources of data - road side interviews - home interview surveys - expansion factors - accuracy checks. Trip generation models - zonal models - category analysis - worked out problems - household models - trip attractions of work centers

Module III (13 hours)
Trip distribution analysis: trip distribution models - assumptions in trip distribution models - growth factor models - gravity models - calibration of gravity model - opportunity models - conventional travel demand forces - travel demand forces in system engineering framework. Worked out problems

Module IV (13 hours)
Mode split and route split analysis: mode split analysis - mode choice behavior - competing modes - mode split curves - probabilistic models - route split analysis - elements of transportation networks - coding - minimum path trees - worked out problems all-or-nothing assignment - capacity restrained assignment - limitations for the conventional approach to activity based model (basic idea only) - production and attraction models - Captive and choice riders - wadropes criteria - root split analysis - different algorithms for shortest path Dijkstra’s algorithms - database management and its advantages

Text books

References books
3. Dicky J.W., Metropolitan Transportation Planning, Tata McGraw Hill
University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks=40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks=60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

Internal Continuous Assessment (Maximum Marks-50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

CE 14 804 (E) Remote Sensing and GIS (G)

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Module I (13 Hours)

Module II (13 Hours)
Opticaa and Microwave Remote sensing:
Module III (13 Hours)

Module IV (13 Hours)

Text books:
1. Anji Reddy, Remote sensing and Geographical systems, BS Publications
2. M G Srinivas (Edited by), remote sensing applications, Nerusa publishing house
3. Lillesand T M and Kuefer R W., Remote sensing and image interpretation, John Wiley and sons

References:

Internal Continuous Assessment(Maximum Marks-50)
60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions. 8x 5 marks=40 marks

PART B: Analytical/Problem solving DESCRIPTIVE questions
Two questions from each module with choice to answer one question. 4 x 15 marks=60 marks

Maximum Total Marks: 100
CE 14 805 (A): Industrial Structures

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

1. To familiarize with the design of special structures widely used in industrial plants.
2. To reinforce the fundamental courses in structural design in the perspective of industrial applications.

Module 1 (13hrs)
Functional design of industrial buildings: (8 hrs)
Classification of industrial structures - layout planning requirements - Guidelines from factories act - Lighting - Illumination levels - Principles of day lighting /artificial lighting design - Natural / Mechanical ventilation - Fire safety requirements - Corrosion protection - Protection against noise - Cladding systems - vibration isolation techniques - Industrial floors.

Introduction to diverse types of industrial structures: (7 hrs)
General overview of Thermal power plant/Nuclear power plant structures / Process plant steelwork – conveyor structures – Boiler supporting structures - Substation structures.

Module 2 (13 hrs)

Structural Design of Industrial Buildings @ use IS 800 -2007
Braced Industrial buildings – Unbraced Industrial frames – Gantry girders – Design of steel beam connections-Flexible & Rigid (Bolted and welded types). Castellated beams – design subjected to flexure, shear – connections

Module 3 (13 hrs)
Special Industrial Structures:
Machine foundations – Types-Design Requirements-Analysis and design of block type machine foundations (IS 2974 method)
Design of Reinforced concrete bunkers and silos as per IS:4995
Tall Chimneys (RCC) – Types-Chimney sizing parameters - Overview of wind and temperature effects-Design principles of Reinforced concrete chimneys as per IS: 4998.

Module 4 (13 hrs)
Tower Structures:
Cooling Towers – Types and functions- Design principles of RC natural draught cooling towers as per IS: 11504
Transmission line Towers- Types-Design loadings-Analysis and design concepts- Description of TL tower foundations.

Textbooks:
References:
3. V. Kalayanaraman, Advances in steel structures. Tata McGraw Hill

Internal Continuous Assessment (Maximum Marks-50)
- 60% - Tests (minimum 2)
- 30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
- 10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8 x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN.
There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE 14 805 (B) Advanced Construction Engineering & Management

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Credits: 4

Objective
To familiarise students with advanced construction methods and management techniques usually adopted in large projects

Module-I (13 hours)
Construction projects – project management – project organization and functions – project development process – main causes of project failure.

Module –II (13 hours)

University of Calicut Syllabus - B.Tech – Civil Engineering - 2014

Module – III (13 hours)

Module – IV (13 hours)

Text Books

References books
4. Deodhar, S.V. - Construction Equipment and Job Planning, Khanna Publishers, New Delhi
5. Dr. Mahesh Varma - Construction Equipment and its Planning and Application, Metropolitan Book Company, New Delhi
6. F. Harris- Modern Construction and Ground Engineering Equipment and Methods, Prentice Hall.
Objective
To develop basic knowledge on Ocean Engineering and related applications.

Module I (14 Hours)
Introduction: man-ocean interaction - effects of ocean on ecology and climate - ocean as a source of food and means of communication - minerals in ocean - disposal of wastes - integrated coastal zone management (ICZM) and its importance in India.
Theory of ocean waves: formulation of wave motion problem - assumptions made in two dimensional cases - small amplitude wave theory - orbital motions and pressures - wave energy.

Module II (12 Hours)

Module III (12 Hours)
Reflection, refraction and diffraction of waves: clapotis or standing waves - super position of waves - diffraction of waves around semi infinite breakwaters - detached breakwater of finite length - diffraction through openings. Wave forces on structures: forces on vertical walls due to non-breaking waves, breaking waves and broken waves based on linear theory - Forces on fixed vertical circular cylinder in the Morison regime - Frolov force and Diffraction regime - Tsunami: Generation, propagation, warning systems.

Module IV (14 Hours)
Shore Protection works: description and effects of breakwaters-sea walls-groynes of various types-beach nourishment, breakwaters, tetrapod, tribar etc. Hudson’s formula and simple design problem.

Reference Books:

Internal assessment: Maximum marks: 50
60% - Tests (Minimum 2)
30% - Assignments (minimum 2) such as homework, problem solving, group discussions, quiz, literature survey, seminar, term project, software exercise etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8 x 5 marks = 40 marks
Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks
Two questions from each module with choice to answer one question.

Maximum Total Marks: 100

CE 14 805 (D) Ground Improvement Techniques

Teaching scheme
3 hours lecture and 1 hour tutorial per week

Module 1 (14 hours)
Objective of ground improvement-In-situ ground improvement methods-Introduction to soil improvements without the addition of many material-surface compaction-impact compaction in sand-vibratory compaction/dynamic compaction of sands-vibroflotation in sand.
sand–explosions in sand- Terra probe method- replacement process - vibroflotation in clays--preloading techniques- sand drains-stone columns-introduction to soil improvement by thermal treatment- introduction to bio technical stabilization

Module II (14 hours)

Introduction to soil improvement by adding materials - lime stabilization –Mechanism-optimum lime content-lime fixation point-effect of lime on physical and engineering properties of soil- lime column method - stabilization of soft clay or silt with lime – stabilization with cement-suitability for soils-effect on properties of soils

Module III (12 hours)

Geosynthetics–Types-applications (only general applications)- types of geotextiles and geo grids - physical and strength properties of geotextiles and geogrids - behaviour of soils on reinforcing with geotextiles and geogrids- - design aspects with geotextiles and geogrid for clay embankments, retaining walls and unpaved roads.

Module IV (12 hours)

Reference books:

1. Moseley, Text Book on Ground Improvement, Blackie Academic Professional, Chapman & Hall
2. Purushotham S. Raju, Ground Improvement Technique,Laxmi Publications

Internal Continuous Assessment (Maximum Marks-50)

60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class
Objective:
- To provide students with balanced information regarding different elements of pollution and its control measures
- To make students aware of statutory controls for pollution control.

Module I (13 Hours)

Module II (13 Hours)

Module III (12 Hours)

Module IV (14 Hours)
Environmental impact analysis – physical, social, aesthetic and economic assessment of highway project, mining and power plants – legislative control – water pollution laws and regulations – Air pollution control act of India – chimney heights – land pollution laws and regulations.

Reference Books:
1. Rao C S, Environmental Pollution Control Engineering, New Age International (P) Ltd.
2. Goel P K, Water Pollution Causes, Effects and Control, New age International (P) Ltd.
4. Bethea R.M, Air Pollution Control technology, Van Nostrand Reinhold Co.
5. Flintoff F, Management of solid waste in developing countries, WHO.
7. Water Pollution Act (1974) passed by Govt. of India.
8. Air pollution Control act of India.

Internal Continuous Assessment (Maximum Marks 50)

60% - Tests (minimum 2)
30% - Assignments (minimum 2) such as home work, problem solving, group discussions, quiz, literature survey, seminar, term-project, software exercises, etc.
10% - Regularity in the class

University Examination Pattern

PART A: Analytical/problem solving SHORT questions 8x 5 marks = 40 marks

Candidates have to answer EIGHT questions out of TEN. There shall be minimum of TWO and maximum of THREE questions from each module with total TEN questions.

PART B: Analytical/Problem solving DESCRIPTIVE questions 4 x 15 marks = 60 marks

Two questions from each module with choice to answer one question.

Maximum Total Marks: 100